ref: dfca994cf6524c28b027e2331ea91281d835834d
dir: /unfinished/group.c/
/* * group.c: a Latin-square puzzle, but played with groups' Cayley * tables. That is, you are given a Cayley table of a group with * most elements blank and a few clues, and you must fill it in * so as to preserve the group axioms. * * This is a perfectly playable and fully working puzzle, but I'm * leaving it for the moment in the 'unfinished' directory because * it's just too esoteric (not to mention _hard_) for me to be * comfortable presenting it to the general public as something they * might (implicitly) actually want to play. * * TODO: * * - more solver techniques? * * Inverses: once we know that gh = e, we can immediately * deduce hg = e as well; then for any gx=y we can deduce * hy=x, and for any xg=y we have yh=x. * * Hard-mode associativity: we currently deduce based on * definite numbers in the grid, but we could also winnow * based on _possible_ numbers. * * My overambitious original thoughts included wondering if we * could infer that there must be elements of certain orders * (e.g. a group of order divisible by 5 must contain an * element of order 5), but I think in fact this is probably * silly. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include "puzzles.h" #include "latin.h" /* * Difficulty levels. I do some macro ickery here to ensure that my * enum and the various forms of my name list always match up. */ #define DIFFLIST(A) \ A(TRIVIAL,Trivial,NULL,t) \ A(NORMAL,Normal,solver_normal,n) \ A(HARD,Hard,solver_hard,h) \ A(EXTREME,Extreme,NULL,x) \ A(UNREASONABLE,Unreasonable,NULL,u) #define ENUM(upper,title,func,lower) DIFF_ ## upper, #define TITLE(upper,title,func,lower) #title, #define ENCODE(upper,title,func,lower) #lower #define CONFIG(upper,title,func,lower) ":" #title enum { DIFFLIST(ENUM) DIFFCOUNT }; static char const *const group_diffnames[] = { DIFFLIST(TITLE) }; static char const group_diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) enum { COL_BACKGROUND, COL_GRID, COL_USER, COL_HIGHLIGHT, COL_ERROR, COL_PENCIL, COL_DIAGONAL, NCOLOURS }; /* * In identity mode, we number the elements e,a,b,c,d,f,g,h,... * Otherwise, they're a,b,c,d,e,f,g,h,... in the obvious way. */ #define E_TO_FRONT(c,id) ( (id) && (c)<=5 ? (c) % 5 + 1 : (c) ) #define E_FROM_FRONT(c,id) ( (id) && (c)<=5 ? ((c) + 3) % 5 + 1 : (c) ) #define FROMCHAR(c,id) E_TO_FRONT((((c)-('A'-1)) & ~0x20), id) #define ISCHAR(c) (((c)>='A'&&(c)<='Z') || ((c)>='a'&&(c)<='z')) #define TOCHAR(c,id) (E_FROM_FRONT(c,id) + ('a'-1)) struct game_params { int w, diff; bool id; }; typedef struct group_common { int refcount; bool *immutable; } group_common; struct game_state { game_params par; digit *grid; int *pencil; /* bitmaps using bits 1<<1..1<<n */ group_common *common; bool completed, cheated; digit *sequence; /* sequence of group elements shown */ /* * This array indicates thick lines separating rows and columns * placed and unplaced manually by the user as a visual aid, e.g. * to delineate a subgroup and its cosets. * * When a line is placed, it's deemed to be between the two * particular group elements that are on either side of it at the * time; dragging those two away from each other automatically * gets rid of the line. Hence, for a given element i, dividers[i] * is either -1 (indicating no divider to the right of i), or some * other element (indicating a divider to the right of i iff that * element is the one right of it). These are eagerly cleared * during drags. */ int *dividers; /* thick lines between rows/cols */ }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = 6; ret->diff = DIFF_NORMAL; ret->id = true; return ret; } static const struct game_params group_presets[] = { { 6, DIFF_NORMAL, true }, { 6, DIFF_NORMAL, false }, { 8, DIFF_NORMAL, true }, { 8, DIFF_NORMAL, false }, { 8, DIFF_HARD, true }, { 8, DIFF_HARD, false }, { 12, DIFF_NORMAL, true }, }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char buf[80]; if (i < 0 || i >= lenof(group_presets)) return false; ret = snew(game_params); *ret = group_presets[i]; /* structure copy */ sprintf(buf, "%dx%d %s%s", ret->w, ret->w, group_diffnames[ret->diff], ret->id ? "" : ", identity hidden"); *name = dupstr(buf); *params = ret; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { char const *p = string; params->w = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; params->diff = DIFF_NORMAL; params->id = true; while (*p) { if (*p == 'd') { int i; p++; params->diff = DIFFCOUNT+1; /* ...which is invalid */ if (*p) { for (i = 0; i < DIFFCOUNT; i++) { if (*p == group_diffchars[i]) params->diff = i; } p++; } } else if (*p == 'i') { params->id = false; p++; } else { /* unrecognised character */ p++; } } } static char *encode_params(const game_params *params, bool full) { char ret[80]; sprintf(ret, "%d", params->w); if (full) sprintf(ret + strlen(ret), "d%c", group_diffchars[params->diff]); if (!params->id) sprintf(ret + strlen(ret), "i"); return dupstr(ret); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(4, config_item); ret[0].name = "Grid size"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Difficulty"; ret[1].type = C_CHOICES; ret[1].u.choices.choicenames = DIFFCONFIG; ret[1].u.choices.selected = params->diff; ret[2].name = "Show identity"; ret[2].type = C_BOOLEAN; ret[2].u.boolean.bval = params->id; ret[3].name = NULL; ret[3].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->diff = cfg[1].u.choices.selected; ret->id = cfg[2].u.boolean.bval; return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w < 3 || params->w > 26) return "Grid size must be between 3 and 26"; if (params->diff >= DIFFCOUNT) return "Unknown difficulty rating"; if (!params->id && params->diff == DIFF_TRIVIAL) { /* * We can't have a Trivial-difficulty puzzle (i.e. latin * square deductions only) without a clear identity, because * identityless puzzles always have two rows and two columns * entirely blank, and no latin-square deduction permits the * distinguishing of two such rows. */ return "Trivial puzzles must have an identity"; } if (!params->id && params->w == 3) { /* * We can't have a 3x3 puzzle without an identity either, * because 3x3 puzzles can't ever be harder than Trivial * (there are no 3x3 latin squares which aren't also valid * group tables, so enabling group-based deductions doesn't * rule out any possible solutions) and - as above - Trivial * puzzles can't not have an identity. */ return "3x3 puzzles must have an identity"; } return NULL; } /* ---------------------------------------------------------------------- * Solver. */ static int find_identity(struct latin_solver *solver) { int w = solver->o; digit *grid = solver->grid; int i, j; for (i = 0; i < w; i++) for (j = 0; j < w; j++) { if (grid[i*w+j] == i+1) return j+1; if (grid[i*w+j] == j+1) return i+1; } return 0; } static int solver_normal(struct latin_solver *solver, void *vctx) { int w = solver->o; #ifdef STANDALONE_SOLVER char **names = solver->names; #endif digit *grid = solver->grid; int i, j, k; /* * Deduce using associativity: (ab)c = a(bc). * * So we pick any a,b,c we like; then if we know ab, bc, and * (ab)c we can fill in a(bc). */ for (i = 0; i < w; i++) for (j = 0; j < w; j++) for (k = 0; k < w; k++) { if (!grid[i*w+j] || !grid[j*w+k]) continue; if (grid[(grid[i*w+j]-1)*w+k] && !grid[i*w+(grid[j*w+k]-1)]) { int x = grid[j*w+k]-1, y = i; int n = grid[(grid[i*w+j]-1)*w+k]; #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*sassociativity on %s,%s,%s: %s*%s = %s*%s\n", solver_recurse_depth*4, "", names[i], names[j], names[k], names[grid[i*w+j]-1], names[k], names[i], names[grid[j*w+k]-1]); printf("%*s placing %s at (%d,%d)\n", solver_recurse_depth*4, "", names[n-1], x+1, y+1); } #endif if (solver->cube[(x*w+y)*w+n-1]) { latin_solver_place(solver, x, y, n); return 1; } else { #ifdef STANDALONE_SOLVER if (solver_show_working) printf("%*s contradiction!\n", solver_recurse_depth*4, ""); return -1; #endif } } if (!grid[(grid[i*w+j]-1)*w+k] && grid[i*w+(grid[j*w+k]-1)]) { int x = k, y = grid[i*w+j]-1; int n = grid[i*w+(grid[j*w+k]-1)]; #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*sassociativity on %s,%s,%s: %s*%s = %s*%s\n", solver_recurse_depth*4, "", names[i], names[j], names[k], names[grid[i*w+j]-1], names[k], names[i], names[grid[j*w+k]-1]); printf("%*s placing %s at (%d,%d)\n", solver_recurse_depth*4, "", names[n-1], x+1, y+1); } #endif if (solver->cube[(x*w+y)*w+n-1]) { latin_solver_place(solver, x, y, n); return 1; } else { #ifdef STANDALONE_SOLVER if (solver_show_working) printf("%*s contradiction!\n", solver_recurse_depth*4, ""); return -1; #endif } } } /* * Fill in the row and column for the group identity, if it's not * already known and if we've just found out what it is. */ i = find_identity(solver); if (i) { bool done_something = false; for (j = 1; j <= w; j++) { if (!grid[(i-1)*w+(j-1)] || !grid[(j-1)*w+(i-1)]) { done_something = true; } } if (done_something) { #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*s%s is the group identity\n", solver_recurse_depth*4, "", names[i-1]); } #endif for (j = 1; j <= w; j++) { if (!grid[(j-1)*w+(i-1)]) { if (!cube(i-1, j-1, j)) { #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*s but %s cannot go at (%d,%d) - " "contradiction!\n", solver_recurse_depth*4, "", names[j-1], i, j); } #endif return -1; } #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*s placing %s at (%d,%d)\n", solver_recurse_depth*4, "", names[j-1], i, j); } #endif latin_solver_place(solver, i-1, j-1, j); } if (!grid[(i-1)*w+(j-1)]) { if (!cube(j-1, i-1, j)) { #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*s but %s cannot go at (%d,%d) - " "contradiction!\n", solver_recurse_depth*4, "", names[j-1], j, i); } #endif return -1; } #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*s placing %s at (%d,%d)\n", solver_recurse_depth*4, "", names[j-1], j, i); } #endif latin_solver_place(solver, j-1, i-1, j); } } return 1; } } return 0; } static int solver_hard(struct latin_solver *solver, void *vctx) { bool done_something = false; int w = solver->o; #ifdef STANDALONE_SOLVER char **names = solver->names; #endif int i, j; /* * In identity-hidden mode, systematically rule out possibilities * for the group identity. * * In solver_normal, we used the fact that any filled square in * the grid whose contents _does_ match one of the elements it's * the product of - that is, ab=a or ab=b - tells you immediately * that the other element is the identity. * * Here, we use the flip side of that: any filled square in the * grid whose contents does _not_ match either its row or column - * that is, if ab is neither a nor b - tells you immediately that * _neither_ of those elements is the identity. And if that's * true, then we can also immediately rule out the possibility * that it acts as the identity on any element at all. */ for (i = 0; i < w; i++) { bool i_can_be_id = true; #ifdef STANDALONE_SOLVER char title[80]; #endif for (j = 0; j < w; j++) { if (grid(i,j) && grid(i,j) != j+1) { #ifdef STANDALONE_SOLVER if (solver_show_working) sprintf(title, "%s cannot be the identity: " "%s%s = %s =/= %s", names[i], names[i], names[j], names[grid(i,j)-1], names[j]); #endif i_can_be_id = false; break; } if (grid(j,i) && grid(j,i) != j+1) { #ifdef STANDALONE_SOLVER if (solver_show_working) sprintf(title, "%s cannot be the identity: " "%s%s = %s =/= %s", names[i], names[j], names[i], names[grid(j,i)-1], names[j]); #endif i_can_be_id = false; break; } } if (!i_can_be_id) { /* Now rule out ij=j or ji=j for all j. */ for (j = 0; j < w; j++) { if (cube(i, j, j+1)) { #ifdef STANDALONE_SOLVER if (solver_show_working) { if (title[0]) { printf("%*s%s\n", solver_recurse_depth*4, "", title); title[0] = '\0'; } printf("%*s ruling out %s at (%d,%d)\n", solver_recurse_depth*4, "", names[j], i, j); } #endif cube(i, j, j+1) = false; } if (cube(j, i, j+1)) { #ifdef STANDALONE_SOLVER if (solver_show_working) { if (title[0]) { printf("%*s%s\n", solver_recurse_depth*4, "", title); title[0] = '\0'; } printf("%*s ruling out %s at (%d,%d)\n", solver_recurse_depth*4, "", names[j], j, i); } #endif cube(j, i, j+1) = false; } } } } return done_something; } #define SOLVER(upper,title,func,lower) func, static usersolver_t const group_solvers[] = { DIFFLIST(SOLVER) }; static bool group_valid(struct latin_solver *solver, void *ctx) { int w = solver->o; #ifdef STANDALONE_SOLVER char **names = solver->names; #endif int i, j, k; for (i = 0; i < w; i++) for (j = 0; j < w; j++) for (k = 0; k < w; k++) { int ij = grid(i, j) - 1; int jk = grid(j, k) - 1; int ij_k = grid(ij, k) - 1; int i_jk = grid(i, jk) - 1; if (ij_k != i_jk) { #ifdef STANDALONE_SOLVER if (solver_show_working) { printf("%*sfailure of associativity: " "(%s%s)%s = %s%s = %s but " "%s(%s%s) = %s%s = %s\n", solver_recurse_depth*4, "", names[i], names[j], names[k], names[ij], names[k], names[ij_k], names[i], names[j], names[k], names[i], names[jk], names[i_jk]); } #endif return false; } } return true; } static int solver(const game_params *params, digit *grid, int maxdiff) { int w = params->w; int ret; struct latin_solver solver; #ifdef STANDALONE_SOLVER char *p, text[100], *names[50]; int i; for (i = 0, p = text; i < w; i++) { names[i] = p; *p++ = TOCHAR(i+1, params->id); *p++ = '\0'; } solver.names = names; #endif if (latin_solver_alloc(&solver, grid, w)) ret = latin_solver_main(&solver, maxdiff, DIFF_TRIVIAL, DIFF_HARD, DIFF_EXTREME, DIFF_EXTREME, DIFF_UNREASONABLE, group_solvers, group_valid, NULL, NULL, NULL); else ret = diff_impossible; latin_solver_free(&solver); return ret; } /* ---------------------------------------------------------------------- * Grid generation. */ static char *encode_grid(char *desc, digit *grid, int area) { int run, i; char *p = desc; run = 0; for (i = 0; i <= area; i++) { int n = (i < area ? grid[i] : -1); if (!n) run++; else { if (run) { while (run > 0) { int c = 'a' - 1 + run; if (run > 26) c = 'z'; *p++ = c; run -= c - ('a' - 1); } } else { /* * If there's a number in the very top left or * bottom right, there's no point putting an * unnecessary _ before or after it. */ if (p > desc && n > 0) *p++ = '_'; } if (n > 0) p += sprintf(p, "%d", n); run = 0; } } return p; } /* ----- data generated by group.gap begins ----- */ struct group { unsigned long autosize; int order, ngens; const char *gens; }; struct groups { int ngroups; const struct group *groups; }; static const struct group groupdata[] = { /* order 2 */ {1L, 2, 1, "BA"}, /* order 3 */ {2L, 3, 1, "BCA"}, /* order 4 */ {2L, 4, 1, "BCDA"}, {6L, 4, 2, "BADC" "CDAB"}, /* order 5 */ {4L, 5, 1, "BCDEA"}, /* order 6 */ {6L, 6, 2, "CFEBAD" "BADCFE"}, {2L, 6, 1, "DCFEBA"}, /* order 7 */ {6L, 7, 1, "BCDEFGA"}, /* order 8 */ {4L, 8, 1, "BCEFDGHA"}, {8L, 8, 2, "BDEFGAHC" "EGBHDCFA"}, {8L, 8, 2, "EGBHDCFA" "BAEFCDHG"}, {24L, 8, 2, "BDEFGAHC" "CHDGBEAF"}, {168L, 8, 3, "BAEFCDHG" "CEAGBHDF" "DFGAHBCE"}, /* order 9 */ {6L, 9, 1, "BDECGHFIA"}, {48L, 9, 2, "BDEAGHCIF" "CEFGHAIBD"}, /* order 10 */ {20L, 10, 2, "CJEBGDIFAH" "BADCFEHGJI"}, {4L, 10, 1, "DCFEHGJIBA"}, /* order 11 */ {10L, 11, 1, "BCDEFGHIJKA"}, /* order 12 */ {12L, 12, 2, "GLDKJEHCBIAF" "BCEFAGIJDKLH"}, {4L, 12, 1, "EHIJKCBLDGFA"}, {24L, 12, 2, "BEFGAIJKCDLH" "FJBKHLEGDCIA"}, {12L, 12, 2, "GLDKJEHCBIAF" "BAEFCDIJGHLK"}, {12L, 12, 2, "FDIJGHLBKAEC" "GIDKFLHCJEAB"}, /* order 13 */ {12L, 13, 1, "BCDEFGHIJKLMA"}, /* order 14 */ {42L, 14, 2, "ELGNIBKDMFAHCJ" "BADCFEHGJILKNM"}, {6L, 14, 1, "FEHGJILKNMBADC"}, /* order 15 */ {8L, 15, 1, "EGHCJKFMNIOBLDA"}, /* order 16 */ {8L, 16, 1, "MKNPFOADBGLCIEHJ"}, {96L, 16, 2, "ILKCONFPEDJHGMAB" "BDFGHIAKLMNCOEPJ"}, {32L, 16, 2, "MIHPFDCONBLAKJGE" "BEFGHJKALMNOCDPI"}, {32L, 16, 2, "IFACOGLMDEJBNPKH" "BEFGHJKALMNOCDPI"}, {16L, 16, 2, "MOHPFKCINBLADJGE" "BDFGHIEKLMNJOAPC"}, {16L, 16, 2, "MIHPFDJONBLEKCGA" "BDFGHIEKLMNJOAPC"}, {32L, 16, 2, "MOHPFDCINBLEKJGA" "BAFGHCDELMNIJKPO"}, {16L, 16, 2, "MIHPFKJONBLADCGE" "GDPHNOEKFLBCIAMJ"}, {32L, 16, 2, "MIBPFDJOGHLEKCNA" "CLEIJGMPKAOHNFDB"}, {192L, 16, 3, "MCHPFAIJNBLDEOGK" "BEFGHJKALMNOCDPI" "GKLBNOEDFPHJIAMC"}, {64L, 16, 3, "MCHPFAIJNBLDEOGK" "LOGFPKJIBNMEDCHA" "CMAIJHPFDEONBLKG"}, {192L, 16, 3, "IPKCOGMLEDJBNFAH" "BEFGHJKALMNOCDPI" "CMEIJBPFKAOGHLDN"}, {48L, 16, 3, "IPDJONFLEKCBGMAH" "FJBLMEOCGHPKAIND" "DGIEKLHNJOAMPBCF"}, {20160L, 16, 4, "EHJKAMNBOCDPFGIL" "BAFGHCDELMNIJKPO" "CFAIJBLMDEOGHPKN" "DGIAKLBNCOEFPHJM"}, /* order 17 */ {16L, 17, 1, "EFGHIJKLMNOPQABCD"}, /* order 18 */ {54L, 18, 2, "MKIQOPNAGLRECDBJHF" "BAEFCDJKLGHIOPMNRQ"}, {6L, 18, 1, "ECJKGHFOPDMNLRIQBA"}, {12L, 18, 2, "ECJKGHBOPAMNFRDQLI" "KNOPQCFREIGHLJAMBD"}, {432L, 18, 3, "IFNAKLQCDOPBGHREMJ" "NOQCFRIGHKLJAMPBDE" "BAEFCDJKLGHIOPMNRQ"}, {48L, 18, 2, "ECJKGHBOPAMNFRDQLI" "FDKLHIOPBMNAREQCJG"}, /* order 19 */ {18L, 19, 1, "EFGHIJKLMNOPQRSABCD"}, /* order 20 */ {40L, 20, 2, "GTDKREHOBILSFMPCJQAN" "EABICDFMGHJQKLNTOPRS"}, {8L, 20, 1, "EHIJLCMNPGQRSKBTDOFA"}, {20L, 20, 2, "DJSHQNCLTRGPEBKAIFOM" "EABICDFMGHJQKLNTOPRS"}, {40L, 20, 2, "GTDKREHOBILSFMPCJQAN" "ECBIAGFMDKJQHONTLSRP"}, {24L, 20, 2, "IGFMDKJQHONTLSREPCBA" "FDIJGHMNKLQROPTBSAEC"}, /* order 21 */ {42L, 21, 2, "ITLSBOUERDHAGKCJNFMQP" "EJHLMKOPNRSQAUTCDBFGI"}, {12L, 21, 1, "EGHCJKFMNIPQLSTOUBRDA"}, /* order 22 */ {110L, 22, 2, "ETGVIBKDMFOHQJSLUNAPCR" "BADCFEHGJILKNMPORQTSVU"}, {10L, 22, 1, "FEHGJILKNMPORQTSVUBADC"}, /* order 23 */ {22L, 23, 1, "EFGHIJKLMNOPQRSTUVWABCD"}, /* order 24 */ {24L, 24, 2, "QXEJWPUMKLRIVBFTSACGHNDO" "HRNOPSWCTUVBLDIJXFGAKQME"}, {8L, 24, 1, "MQBTUDRWFGHXJELINOPKSAVC"}, {24L, 24, 2, "IOQRBEUVFWGHKLAXMNPSCDTJ" "NJXOVGDKSMTFIPQELCURBWAH"}, {48L, 24, 2, "QUEJWVXFKLRIPGMNSACBOTDH" "HSNOPWLDTUVBRIAKXFGCQEMJ"}, {24L, 24, 2, "QXEJWPUMKLRIVBFTSACGHNDO" "TWHNXLRIOPUMSACQVBFDEJGK"}, {48L, 24, 2, "QUEJWVXFKLRIPGMNSACBOTDH" "BAFGHCDEMNOPIJKLTUVQRSXW"}, {48L, 24, 3, "QXKJWVUMESRIPGFTLDCBONAH" "JUEQRPXFKLWCVBMNSAIGHTDO" "HSNOPWLDTUVBRIAKXFGCQEMJ"}, {24L, 24, 3, "QUKJWPXFESRIVBMNLDCGHTAO" "JXEQRVUMKLWCPGFTSAIBONDH" "TRONXLWCHVUMSAIJPGFDEQBK"}, {16L, 24, 2, "MRGTULWIOPFXSDJQBVNEKCHA" "VKXHOQASNTPBCWDEUFGIJLMR"}, {16L, 24, 2, "MRGTULWIOPFXSDJQBVNEKCHA" "RMLWIGTUSDJQOPFXEKCBVNAH"}, {48L, 24, 2, "IULQRGXMSDCWOPNTEKJBVFAH" "GLMOPRSDTUBVWIEKFXHJQANC"}, {24L, 24, 2, "UJPXMRCSNHGTLWIKFVBEDQOA" "NRUFVLWIPXMOJEDQHGTCSABK"}, {24L, 24, 2, "MIBTUAQRFGHXCDEWNOPJKLVS" "OKXVFWSCGUTNDRQJBPMALIHE"}, {144L, 24, 3, "QXKJWVUMESRIPGFTLDCBONAH" "JUEQRPXFKLWCVBMNSAIGHTDO" "BAFGHCDEMNOPIJKLTUVQRSXW"}, {336L, 24, 3, "QTKJWONXESRIHVUMLDCPGFAB" "JNEQRHTUKLWCOPXFSAIVBMDG" "HENOPJKLTUVBQRSAXFGWCDMI"}, /* order 25 */ {20L, 25, 1, "EHILMNPQRSFTUVBJWXDOYGAKC"}, {480L, 25, 2, "EHILMNPQRSCTUVBFWXDJYGOKA" "BDEGHIKLMNAPQRSCTUVFWXJYO"}, /* order 26 */ {156L, 26, 2, "EXGZIBKDMFOHQJSLUNWPYRATCV" "BADCFEHGJILKNMPORQTSVUXWZY"}, {12L, 26, 1, "FEHGJILKNMPORQTSVUXWZYBADC"}, }; static const struct groups groups[] = { {0, NULL}, /* trivial case: 0 */ {0, NULL}, /* trivial case: 1 */ {1, groupdata + 0}, /* 2 */ {1, groupdata + 1}, /* 3 */ {2, groupdata + 2}, /* 4 */ {1, groupdata + 4}, /* 5 */ {2, groupdata + 5}, /* 6 */ {1, groupdata + 7}, /* 7 */ {5, groupdata + 8}, /* 8 */ {2, groupdata + 13}, /* 9 */ {2, groupdata + 15}, /* 10 */ {1, groupdata + 17}, /* 11 */ {5, groupdata + 18}, /* 12 */ {1, groupdata + 23}, /* 13 */ {2, groupdata + 24}, /* 14 */ {1, groupdata + 26}, /* 15 */ {14, groupdata + 27}, /* 16 */ {1, groupdata + 41}, /* 17 */ {5, groupdata + 42}, /* 18 */ {1, groupdata + 47}, /* 19 */ {5, groupdata + 48}, /* 20 */ {2, groupdata + 53}, /* 21 */ {2, groupdata + 55}, /* 22 */ {1, groupdata + 57}, /* 23 */ {15, groupdata + 58}, /* 24 */ {2, groupdata + 73}, /* 25 */ {2, groupdata + 75}, /* 26 */ }; /* ----- data generated by group.gap ends ----- */ static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { int w = params->w, a = w*w; digit *grid, *soln, *soln2; int *indices; int i, j, k, qh, qt; int diff = params->diff; const struct group *group; char *desc, *p; /* * Difficulty exceptions: some combinations of size and * difficulty cannot be satisfied, because all puzzles of at * most that difficulty are actually even easier. * * Remember to re-test this whenever a change is made to the * solver logic! * * I tested it using the following shell command: for d in t n h x u; do for id in '' i; do for i in {3..9}; do echo -n "./group --generate 1 ${i}d${d}${id}: " perl -e 'alarm 30; exec @ARGV' \ ./group --generate 1 ${i}d${d}${id} >/dev/null && echo ok done done done * Of course, it's better to do that after taking the exceptions * _out_, so as to detect exceptions that should be removed as * well as those which should be added. */ if (w < 5 && diff == DIFF_UNREASONABLE) diff--; if ((w < 5 || ((w == 6 || w == 8) && params->id)) && diff == DIFF_EXTREME) diff--; if ((w < 6 || (w == 6 && params->id)) && diff == DIFF_HARD) diff--; if ((w < 4 || (w == 4 && params->id)) && diff == DIFF_NORMAL) diff--; grid = snewn(a, digit); soln = snewn(a, digit); soln2 = snewn(a, digit); indices = snewn(a, int); while (1) { /* * Construct a valid group table, by picking a group from * the above data table, decompressing it into a full * representation by BFS, and then randomly permuting its * non-identity elements. * * We build the canonical table in 'soln' (and use 'grid' as * our BFS queue), then transfer the table into 'grid' * having shuffled the rows. */ assert(w >= 2); assert(w < lenof(groups)); group = groups[w].groups + random_upto(rs, groups[w].ngroups); assert(group->order == w); memset(soln, 0, a); for (i = 0; i < w; i++) soln[i] = i+1; qh = qt = 0; grid[qt++] = 1; while (qh < qt) { digit *row, *newrow; i = grid[qh++]; row = soln + (i-1)*w; for (j = 0; j < group->ngens; j++) { int nri; const char *gen = group->gens + j*w; /* * Apply each group generator to row, constructing a * new row. */ nri = gen[row[0]-1] - 'A' + 1; /* which row is it? */ newrow = soln + (nri-1)*w; if (!newrow[0]) { /* not done yet */ for (k = 0; k < w; k++) newrow[k] = gen[row[k]-1] - 'A' + 1; grid[qt++] = nri; } } } /* That's got the canonical table. Now shuffle it. */ for (i = 0; i < w; i++) soln2[i] = i; if (params->id) /* do we shuffle in the identity? */ shuffle(soln2+1, w-1, sizeof(*soln2), rs); else shuffle(soln2, w, sizeof(*soln2), rs); for (i = 0; i < w; i++) for (j = 0; j < w; j++) grid[(soln2[i])*w+(soln2[j])] = soln2[soln[i*w+j]-1]+1; /* * Remove entries one by one while the puzzle is still * soluble at the appropriate difficulty level. */ memcpy(soln, grid, a); if (!params->id) { /* * Start by blanking the entire identity row and column, * and also another row and column so that the player * can't trivially determine which element is the * identity. */ j = 1 + random_upto(rs, w-1); /* pick a second row/col to blank */ for (i = 0; i < w; i++) { grid[(soln2[0])*w+i] = grid[i*w+(soln2[0])] = 0; grid[(soln2[j])*w+i] = grid[i*w+(soln2[j])] = 0; } memcpy(soln2, grid, a); if (solver(params, soln2, diff) > diff) continue; /* go round again if that didn't work */ } k = 0; for (i = (params->id ? 1 : 0); i < w; i++) for (j = (params->id ? 1 : 0); j < w; j++) if (grid[i*w+j]) indices[k++] = i*w+j; shuffle(indices, k, sizeof(*indices), rs); for (i = 0; i < k; i++) { memcpy(soln2, grid, a); soln2[indices[i]] = 0; if (solver(params, soln2, diff) <= diff) grid[indices[i]] = 0; } /* * Make sure the puzzle isn't too easy. */ if (diff > 0) { memcpy(soln2, grid, a); if (solver(params, soln2, diff-1) < diff) continue; /* go round and try again */ } /* * Done. */ break; } /* * Encode the puzzle description. */ desc = snewn(a*20, char); p = encode_grid(desc, grid, a); *p++ = '\0'; desc = sresize(desc, p - desc, char); /* * Encode the solution. */ *aux = snewn(a+2, char); (*aux)[0] = 'S'; for (i = 0; i < a; i++) (*aux)[i+1] = TOCHAR(soln[i], params->id); (*aux)[a+1] = '\0'; sfree(grid); sfree(soln); sfree(soln2); sfree(indices); return desc; } /* ---------------------------------------------------------------------- * Gameplay. */ static const char *validate_grid_desc(const char **pdesc, int range, int area) { const char *desc = *pdesc; int squares = 0; while (*desc && *desc != ',') { int n = *desc++; if (n >= 'a' && n <= 'z') { squares += n - 'a' + 1; } else if (n == '_') { /* do nothing */; } else if (n > '0' && n <= '9') { int val = atoi(desc-1); if (val < 1 || val > range) return "Out-of-range number in game description"; squares++; while (*desc >= '0' && *desc <= '9') desc++; } else return "Invalid character in game description"; } if (squares < area) return "Not enough data to fill grid"; if (squares > area) return "Too much data to fit in grid"; *pdesc = desc; return NULL; } static const char *validate_desc(const game_params *params, const char *desc) { int w = params->w, a = w*w; const char *p = desc; return validate_grid_desc(&p, w, a); } static const char *spec_to_grid(const char *desc, digit *grid, int area) { int i = 0; while (*desc && *desc != ',') { int n = *desc++; if (n >= 'a' && n <= 'z') { int run = n - 'a' + 1; assert(i + run <= area); while (run-- > 0) grid[i++] = 0; } else if (n == '_') { /* do nothing */; } else if (n > '0' && n <= '9') { assert(i < area); grid[i++] = atoi(desc-1); while (*desc >= '0' && *desc <= '9') desc++; } else { assert(!"We can't get here"); } } assert(i == area); return desc; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int w = params->w, a = w*w; game_state *state = snew(game_state); int i; state->par = *params; /* structure copy */ state->grid = snewn(a, digit); state->common = snew(group_common); state->common->refcount = 1; state->common->immutable = snewn(a, bool); state->pencil = snewn(a, int); for (i = 0; i < a; i++) { state->grid[i] = 0; state->common->immutable[i] = false; state->pencil[i] = 0; } state->sequence = snewn(w, digit); state->dividers = snewn(w, int); for (i = 0; i < w; i++) { state->sequence[i] = i; state->dividers[i] = -1; } desc = spec_to_grid(desc, state->grid, a); for (i = 0; i < a; i++) if (state->grid[i] != 0) state->common->immutable[i] = true; state->completed = false; state->cheated = false; return state; } static game_state *dup_game(const game_state *state) { int w = state->par.w, a = w*w; game_state *ret = snew(game_state); ret->par = state->par; /* structure copy */ ret->grid = snewn(a, digit); ret->common = state->common; ret->common->refcount++; ret->pencil = snewn(a, int); ret->sequence = snewn(w, digit); ret->dividers = snewn(w, int); memcpy(ret->grid, state->grid, a*sizeof(digit)); memcpy(ret->pencil, state->pencil, a*sizeof(int)); memcpy(ret->sequence, state->sequence, w*sizeof(digit)); memcpy(ret->dividers, state->dividers, w*sizeof(int)); ret->completed = state->completed; ret->cheated = state->cheated; return ret; } static void free_game(game_state *state) { sfree(state->grid); if (--state->common->refcount == 0) { sfree(state->common->immutable); sfree(state->common); } sfree(state->pencil); sfree(state->sequence); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { int w = state->par.w, a = w*w; int i, ret; digit *soln; char *out; if (aux) return dupstr(aux); soln = snewn(a, digit); memcpy(soln, state->grid, a*sizeof(digit)); ret = solver(&state->par, soln, DIFFCOUNT-1); if (ret == diff_impossible) { *error = "No solution exists for this puzzle"; out = NULL; } else if (ret == diff_ambiguous) { *error = "Multiple solutions exist for this puzzle"; out = NULL; } else { out = snewn(a+2, char); out[0] = 'S'; for (i = 0; i < a; i++) out[i+1] = TOCHAR(soln[i], state->par.id); out[a+1] = '\0'; } sfree(soln); return out; } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { int w = state->par.w; int x, y; char *ret, *p, ch; ret = snewn(2*w*w+1, char); /* leave room for terminating NUL */ p = ret; for (y = 0; y < w; y++) { for (x = 0; x < w; x++) { digit d = state->grid[y*w+x]; if (d == 0) { ch = '.'; } else { ch = TOCHAR(d, state->par.id); } *p++ = ch; if (x == w-1) { *p++ = '\n'; } else { *p++ = ' '; } } } assert(p - ret == 2*w*w); *p = '\0'; return ret; } struct game_ui { /* * These are the coordinates of the primary highlighted square on * the grid, if hshow = 1. */ int hx, hy; /* * These are the coordinates hx,hy _before_ they go through * state->sequence. */ int ohx, ohy; /* * These variables give the length and displacement of a diagonal * sequence of highlighted squares starting at ohx,ohy (still if * hshow = 1). To find the squares' real coordinates, for 0<=i<dn, * compute ohx+i*odx and ohy+i*ody and then map through * state->sequence. */ int odx, ody, odn; /* * This indicates whether the current highlight is a * pencil-mark one or a real one. */ bool hpencil; /* * This indicates whether or not we're showing the highlight * (used to be hx = hy = -1); important so that when we're * using the cursor keys it doesn't keep coming back at a * fixed position. When hshow = 1, pressing a valid number * or letter key or Space will enter that number or letter in the grid. */ bool hshow; /* * This indicates whether we're using the highlight as a cursor; * it means that it doesn't vanish on a keypress, and that it is * allowed on immutable squares. */ bool hcursor; /* * This indicates whether we're dragging a table header to * reposition an entire row or column. */ int drag; /* 0=none 1=row 2=col */ int dragnum; /* element being dragged */ int dragpos; /* its current position */ int edgepos; /* * User preference option: if the user right-clicks in a square * and presses a letter key to add/remove a pencil mark, do we * hide the mouse highlight again afterwards? * * Historically our answer was yes. The Android port prefers no. * There are advantages both ways, depending how much you dislike * the highlight cluttering your view. So it's a preference. */ bool pencil_keep_highlight; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->hx = ui->hy = 0; ui->hpencil = false; ui->hshow = false; ui->hcursor = false; ui->drag = 0; ui->pencil_keep_highlight = false; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static config_item *get_prefs(game_ui *ui) { config_item *ret; ret = snewn(2, config_item); ret[0].name = "Keep mouse highlight after changing a pencil mark"; ret[0].kw = "pencil-keep-highlight"; ret[0].type = C_BOOLEAN; ret[0].u.boolean.bval = ui->pencil_keep_highlight; ret[1].name = NULL; ret[1].type = C_END; return ret; } static void set_prefs(game_ui *ui, const config_item *cfg) { ui->pencil_keep_highlight = cfg[0].u.boolean.bval; } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { int w = newstate->par.w; /* * We prevent pencil-mode highlighting of a filled square, unless * we're using the cursor keys. So if the user has just filled in * a square which we had a pencil-mode highlight in (by Undo, or * by Redo, or by Solve), then we cancel the highlight. */ if (ui->hshow && ui->hpencil && !ui->hcursor && newstate->grid[ui->hy * w + ui->hx] != 0) { ui->hshow = false; } if (ui->hshow && ui->odn > 1) { /* * Reordering of rows or columns within the range of a * multifill selection cancels the multifill and deselects * everything. */ int i; for (i = 0; i < ui->odn; i++) { if (oldstate->sequence[ui->ohx + i*ui->odx] != newstate->sequence[ui->ohx + i*ui->odx]) { ui->hshow = false; break; } if (oldstate->sequence[ui->ohy + i*ui->ody] != newstate->sequence[ui->ohy + i*ui->ody]) { ui->hshow = false; break; } } } else if (ui->hshow && (newstate->sequence[ui->ohx] != ui->hx || newstate->sequence[ui->ohy] != ui->hy)) { /* * Otherwise, reordering of the row or column containing the * selection causes the selection to move with it. */ int i; for (i = 0; i < w; i++) { if (newstate->sequence[i] == ui->hx) ui->ohx = i; if (newstate->sequence[i] == ui->hy) ui->ohy = i; } } } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { if (ui->hshow && button == CURSOR_SELECT) return ui->hpencil ? "Ink" : "Pencil"; if (ui->hshow && button == CURSOR_SELECT2) { int w = state->par.w; int i; for (i = 0; i < ui->odn; i++) { int x = state->sequence[ui->ohx + i*ui->odx]; int y = state->sequence[ui->ohy + i*ui->ody]; int index = y*w+x; if (ui->hpencil && state->grid[index]) return ""; if (state->common->immutable[index]) return ""; } return "Clear"; } return ""; } #define PREFERRED_TILESIZE 48 #define TILESIZE (ds->tilesize) #define BORDER (TILESIZE / 2) #define LEGEND (TILESIZE) #define GRIDEXTRA max((TILESIZE / 32),1) #define COORD(x) ((x)*TILESIZE + BORDER + LEGEND) #define FROMCOORD(x) (((x)+(TILESIZE-BORDER-LEGEND)) / TILESIZE - 1) #define FLASH_TIME 0.4F #define DF_DIVIDER_TOP 0x1000 #define DF_DIVIDER_BOT 0x2000 #define DF_DIVIDER_LEFT 0x4000 #define DF_DIVIDER_RIGHT 0x8000 #define DF_HIGHLIGHT 0x0400 #define DF_HIGHLIGHT_PENCIL 0x0200 #define DF_IMMUTABLE 0x0100 #define DF_LEGEND 0x0080 #define DF_DIGIT_MASK 0x001F #define EF_DIGIT_SHIFT 5 #define EF_DIGIT_MASK ((1 << EF_DIGIT_SHIFT) - 1) #define EF_LEFT_SHIFT 0 #define EF_RIGHT_SHIFT (3*EF_DIGIT_SHIFT) #define EF_LEFT_MASK ((1UL << (3*EF_DIGIT_SHIFT)) - 1UL) #define EF_RIGHT_MASK (EF_LEFT_MASK << EF_RIGHT_SHIFT) #define EF_LATIN (1UL << (6*EF_DIGIT_SHIFT)) struct game_drawstate { game_params par; int w, tilesize; bool started; long *tiles, *legend, *pencil, *errors; long *errtmp; digit *sequence; }; static bool check_errors(const game_state *state, long *errors) { int w = state->par.w, a = w*w; digit *grid = state->grid; int i, j, k, x, y; bool errs = false; /* * To verify that we have a valid group table, it suffices to * test latin-square-hood and associativity only. All the other * group axioms follow from those two. * * Proof: * * Associativity is given; closure is obvious from latin- * square-hood. We need to show that an identity exists and that * every element has an inverse. * * Identity: take any element a. There will be some element e * such that ea=a (in a latin square, every element occurs in * every row and column, so a must occur somewhere in the a * column, say on row e). For any other element b, there must * exist x such that ax=b (same argument from latin-square-hood * again), and then associativity gives us eb = e(ax) = (ea)x = * ax = b. Hence eb=b for all b, i.e. e is a left-identity. A * similar argument tells us that there must be some f which is * a right-identity, and then we show they are the same element * by observing that ef must simultaneously equal e and equal f. * * Inverses: given any a, by the latin-square argument again, * there must exist p and q such that pa=e and aq=e (i.e. left- * and right-inverses). We can show these are equal by * associativity: p = pe = p(aq) = (pa)q = eq = q. [] */ if (errors) for (i = 0; i < a; i++) errors[i] = 0; for (y = 0; y < w; y++) { unsigned long mask = 0, errmask = 0; for (x = 0; x < w; x++) { unsigned long bit = 1UL << grid[y*w+x]; errmask |= (mask & bit); mask |= bit; } if (mask != (1 << (w+1)) - (1 << 1)) { errs = true; errmask &= ~1UL; if (errors) { for (x = 0; x < w; x++) if (errmask & (1UL << grid[y*w+x])) errors[y*w+x] |= EF_LATIN; } } } for (x = 0; x < w; x++) { unsigned long mask = 0, errmask = 0; for (y = 0; y < w; y++) { unsigned long bit = 1UL << grid[y*w+x]; errmask |= (mask & bit); mask |= bit; } if (mask != (1 << (w+1)) - (1 << 1)) { errs = true; errmask &= ~1UL; if (errors) { for (y = 0; y < w; y++) if (errmask & (1UL << grid[y*w+x])) errors[y*w+x] |= EF_LATIN; } } } for (i = 1; i < w; i++) for (j = 1; j < w; j++) for (k = 1; k < w; k++) if (grid[i*w+j] && grid[j*w+k] && grid[(grid[i*w+j]-1)*w+k] && grid[i*w+(grid[j*w+k]-1)] && grid[(grid[i*w+j]-1)*w+k] != grid[i*w+(grid[j*w+k]-1)]) { if (errors) { int a = i+1, b = j+1, c = k+1; int ab = grid[i*w+j], bc = grid[j*w+k]; int left = (ab-1)*w+(c-1), right = (a-1)*w+(bc-1); /* * If the appropriate error slot is already * used for one of the squares, we don't * fill either of them. */ if (!(errors[left] & EF_LEFT_MASK) && !(errors[right] & EF_RIGHT_MASK)) { long err; err = a; err = (err << EF_DIGIT_SHIFT) | b; err = (err << EF_DIGIT_SHIFT) | c; errors[left] |= err << EF_LEFT_SHIFT; errors[right] |= err << EF_RIGHT_SHIFT; } } errs = true; } return errs; } static int find_in_sequence(digit *seq, int len, digit n) { int i; for (i = 0; i < len; i++) if (seq[i] == n) return i; assert(!"Should never get here"); return -1; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->par.w; int tx, ty; char buf[80]; button &= ~MOD_MASK; tx = FROMCOORD(x); ty = FROMCOORD(y); if (ui->drag) { if (IS_MOUSE_DRAG(button)) { int tcoord = ((ui->drag &~ 4) == 1 ? ty : tx); ui->drag |= 4; /* some movement has happened */ if (tcoord >= 0 && tcoord < w) { ui->dragpos = tcoord; return MOVE_UI_UPDATE; } } else if (IS_MOUSE_RELEASE(button)) { if (ui->drag & 4) { ui->drag = 0; /* end drag */ if (state->sequence[ui->dragpos] == ui->dragnum) return MOVE_UI_UPDATE; /* drag was a no-op overall */ sprintf(buf, "D%d,%d", ui->dragnum, ui->dragpos); return dupstr(buf); } else { ui->drag = 0; /* end 'drag' */ if (ui->edgepos > 0 && ui->edgepos < w) { sprintf(buf, "V%d,%d", state->sequence[ui->edgepos-1], state->sequence[ui->edgepos]); return dupstr(buf); } else return MOVE_UI_UPDATE; /* no-op */ } } } else if (IS_MOUSE_DOWN(button)) { if (tx >= 0 && tx < w && ty >= 0 && ty < w) { int otx = tx, oty = ty; tx = state->sequence[tx]; ty = state->sequence[ty]; if (button == LEFT_BUTTON) { if (tx == ui->hx && ty == ui->hy && ui->hshow && !ui->hpencil) { ui->hshow = false; } else { ui->hx = tx; ui->hy = ty; ui->ohx = otx; ui->ohy = oty; ui->odx = ui->ody = 0; ui->odn = 1; ui->hshow = !state->common->immutable[ty*w+tx]; ui->hpencil = false; } ui->hcursor = false; return MOVE_UI_UPDATE; } if (button == RIGHT_BUTTON) { /* * Pencil-mode highlighting for non filled squares. */ if (state->grid[ty*w+tx] == 0) { if (tx == ui->hx && ty == ui->hy && ui->hshow && ui->hpencil) { ui->hshow = false; } else { ui->hpencil = true; ui->hx = tx; ui->hy = ty; ui->ohx = otx; ui->ohy = oty; ui->odx = ui->ody = 0; ui->odn = 1; ui->hshow = true; } } else { ui->hshow = false; } ui->hcursor = false; return MOVE_UI_UPDATE; } } else if (tx >= 0 && tx < w && ty == -1) { ui->drag = 2; ui->dragnum = state->sequence[tx]; ui->dragpos = tx; ui->edgepos = FROMCOORD(x + TILESIZE/2); return MOVE_UI_UPDATE; } else if (ty >= 0 && ty < w && tx == -1) { ui->drag = 1; ui->dragnum = state->sequence[ty]; ui->dragpos = ty; ui->edgepos = FROMCOORD(y + TILESIZE/2); return MOVE_UI_UPDATE; } } else if (IS_MOUSE_DRAG(button)) { if (!ui->hpencil && tx >= 0 && tx < w && ty >= 0 && ty < w && abs(tx - ui->ohx) == abs(ty - ui->ohy)) { ui->odn = abs(tx - ui->ohx) + 1; ui->odx = (tx < ui->ohx ? -1 : +1); ui->ody = (ty < ui->ohy ? -1 : +1); } else { ui->odx = ui->ody = 0; ui->odn = 1; } return MOVE_UI_UPDATE; } if (IS_CURSOR_MOVE(button)) { int cx = find_in_sequence(state->sequence, w, ui->hx); int cy = find_in_sequence(state->sequence, w, ui->hy); move_cursor(button, &cx, &cy, w, w, false, NULL); ui->hx = state->sequence[cx]; ui->hy = state->sequence[cy]; ui->hshow = true; ui->hcursor = true; ui->ohx = cx; ui->ohy = cy; ui->odx = ui->ody = 0; ui->odn = 1; return MOVE_UI_UPDATE; } if (ui->hshow && (button == CURSOR_SELECT)) { ui->hpencil = !ui->hpencil; ui->hcursor = true; return MOVE_UI_UPDATE; } if (ui->hshow && ((ISCHAR(button) && FROMCHAR(button, state->par.id) <= w) || button == CURSOR_SELECT2 || button == '\b')) { int n = FROMCHAR(button, state->par.id); int i, buflen; char *movebuf; if (button == CURSOR_SELECT2 || button == '\b') n = 0; for (i = 0; i < ui->odn; i++) { int x = state->sequence[ui->ohx + i*ui->odx]; int y = state->sequence[ui->ohy + i*ui->ody]; int index = y*w+x; /* * Can't make pencil marks in a filled square. This can only * become highlighted if we're using cursor keys. */ if (ui->hpencil && state->grid[index]) return NULL; /* * Can't do anything to an immutable square. Exception: * trying to set it to what it already was is OK (so that * multifilling can set a whole diagonal to a without * having to detour round the one immutable square in the * middle that already said a). */ if (!ui->hpencil && state->grid[index] == n) /* OK even if it is immutable */; else if (state->common->immutable[index]) return NULL; } movebuf = snewn(80 * ui->odn, char); buflen = sprintf(movebuf, "%c%d,%d,%d", (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n); for (i = 1; i < ui->odn; i++) { assert(buflen < i*80); buflen += sprintf(movebuf + buflen, "+%d,%d", state->sequence[ui->ohx + i*ui->odx], state->sequence[ui->ohy + i*ui->ody]); } movebuf = sresize(movebuf, buflen+1, char); /* * Hide the highlight after a keypress, if it was mouse- * generated. Also, don't hide it if this move has changed * pencil marks and the user preference says not to hide the * highlight in that situation. */ if (!ui->hcursor && !(ui->hpencil && ui->pencil_keep_highlight)) ui->hshow = false; return movebuf; } if (button == 'M' || button == 'm') return dupstr("M"); return NULL; } static game_state *execute_move(const game_state *from, const char *move) { int w = from->par.w, a = w*w; game_state *ret; int x, y, i, j, n, pos; if (move[0] == 'S') { ret = dup_game(from); ret->completed = ret->cheated = true; for (i = 0; i < a; i++) { if (!ISCHAR(move[i+1]) || FROMCHAR(move[i+1], from->par.id) > w) { free_game(ret); return NULL; } ret->grid[i] = FROMCHAR(move[i+1], from->par.id); ret->pencil[i] = 0; } if (move[a+1] != '\0') { free_game(ret); return NULL; } return ret; } else if ((move[0] == 'P' || move[0] == 'R') && sscanf(move+1, "%d,%d,%d%n", &x, &y, &n, &pos) == 3 && n >= 0 && n <= w) { const char *mp = move + 1 + pos; bool pencil = (move[0] == 'P'); ret = dup_game(from); while (1) { if (x < 0 || x >= w || y < 0 || y >= w) { free_game(ret); return NULL; } if (from->common->immutable[y*w+x] && !(!pencil && from->grid[y*w+x] == n)) return NULL; if (move[0] == 'P' && n > 0) { ret->pencil[y*w+x] ^= 1 << n; } else { ret->grid[y*w+x] = n; ret->pencil[y*w+x] = 0; } if (!*mp) break; if (*mp != '+') return NULL; if (sscanf(mp, "+%d,%d%n", &x, &y, &pos) < 2) return NULL; mp += pos; } if (!ret->completed && !check_errors(ret, NULL)) ret->completed = true; return ret; } else if (move[0] == 'M') { /* * Fill in absolutely all pencil marks everywhere. (I * wouldn't use this for actual play, but it's a handy * starting point when following through a set of * diagnostics output by the standalone solver.) */ ret = dup_game(from); for (i = 0; i < a; i++) { if (!ret->grid[i]) ret->pencil[i] = (1 << (w+1)) - (1 << 1); } return ret; } else if (move[0] == 'D' && sscanf(move+1, "%d,%d", &x, &y) == 2) { /* * Reorder the rows and columns so that digit x is in position * y. */ ret = dup_game(from); for (i = j = 0; i < w; i++) { if (i == y) { ret->sequence[i] = x; } else { if (from->sequence[j] == x) j++; ret->sequence[i] = from->sequence[j++]; } } /* * Eliminate any obsoleted dividers. */ for (x = 0; x < w; x++) { int i = ret->sequence[x]; int j = (x+1 < w ? ret->sequence[x+1] : -1); if (ret->dividers[i] != j) ret->dividers[i] = -1; } return ret; } else if (move[0] == 'V' && sscanf(move+1, "%d,%d", &i, &j) == 2) { ret = dup_game(from); if (ret->dividers[i] == j) ret->dividers[i] = -1; else ret->dividers[i] = j; return ret; } else return NULL; /* couldn't parse move string */ } /* ---------------------------------------------------------------------- * Drawing routines. */ #define SIZE(w) ((w) * TILESIZE + 2*BORDER + LEGEND) static void game_compute_size(const game_params *params, int tilesize, const game_ui *ui, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = *y = SIZE(params->w); } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_GRID * 3 + 0] = 0.0F; ret[COL_GRID * 3 + 1] = 0.0F; ret[COL_GRID * 3 + 2] = 0.0F; ret[COL_USER * 3 + 0] = 0.0F; ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_USER * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.0F; ret[COL_ERROR * 3 + 2] = 0.0F; ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2]; ret[COL_DIAGONAL * 3 + 0] = 0.95F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_DIAGONAL * 3 + 1] = 0.95F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_DIAGONAL * 3 + 2] = 0.95F * ret[COL_BACKGROUND * 3 + 2]; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { int w = state->par.w, a = w*w; struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->w = w; ds->par = state->par; /* structure copy */ ds->tilesize = 0; ds->started = false; ds->tiles = snewn(a, long); ds->legend = snewn(w, long); ds->pencil = snewn(a, long); ds->errors = snewn(a, long); ds->sequence = snewn(a, digit); for (i = 0; i < a; i++) ds->tiles[i] = ds->pencil[i] = -1; for (i = 0; i < w; i++) ds->legend[i] = -1; ds->errtmp = snewn(a, long); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->tiles); sfree(ds->pencil); sfree(ds->errors); sfree(ds->errtmp); sfree(ds->sequence); sfree(ds); } static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, long tile, long pencil, long error) { int w = ds->w /* , a = w*w */; int tx, ty, tw, th; int cx, cy, cw, ch; char str[64]; tx = BORDER + LEGEND + x * TILESIZE + 1; ty = BORDER + LEGEND + y * TILESIZE + 1; cx = tx; cy = ty; cw = tw = TILESIZE-1; ch = th = TILESIZE-1; if (tile & DF_LEGEND) { cx += TILESIZE/10; cy += TILESIZE/10; cw -= TILESIZE/5; ch -= TILESIZE/5; tile |= DF_IMMUTABLE; } clip(dr, cx, cy, cw, ch); /* background needs erasing */ draw_rect(dr, cx, cy, cw, ch, (tile & DF_HIGHLIGHT) ? COL_HIGHLIGHT : (x == y) ? COL_DIAGONAL : COL_BACKGROUND); /* dividers */ if (tile & DF_DIVIDER_TOP) draw_rect(dr, cx, cy, cw, 1, COL_GRID); if (tile & DF_DIVIDER_BOT) draw_rect(dr, cx, cy+ch-1, cw, 1, COL_GRID); if (tile & DF_DIVIDER_LEFT) draw_rect(dr, cx, cy, 1, ch, COL_GRID); if (tile & DF_DIVIDER_RIGHT) draw_rect(dr, cx+cw-1, cy, 1, ch, COL_GRID); /* pencil-mode highlight */ if (tile & DF_HIGHLIGHT_PENCIL) { int coords[6]; coords[0] = cx; coords[1] = cy; coords[2] = cx+cw/2; coords[3] = cy; coords[4] = cx; coords[5] = cy+ch/2; draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT); } /* new number needs drawing? */ if (tile & DF_DIGIT_MASK) { str[1] = '\0'; str[0] = TOCHAR(tile & DF_DIGIT_MASK, ds->par.id); draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, (error & EF_LATIN) ? COL_ERROR : (tile & DF_IMMUTABLE) ? COL_GRID : COL_USER, str); if (error & EF_LEFT_MASK) { int a = (error >> (EF_LEFT_SHIFT+2*EF_DIGIT_SHIFT))&EF_DIGIT_MASK; int b = (error >> (EF_LEFT_SHIFT+1*EF_DIGIT_SHIFT))&EF_DIGIT_MASK; int c = (error >> (EF_LEFT_SHIFT ))&EF_DIGIT_MASK; char buf[10]; sprintf(buf, "(%c%c)%c", TOCHAR(a, ds->par.id), TOCHAR(b, ds->par.id), TOCHAR(c, ds->par.id)); draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/6, FONT_VARIABLE, TILESIZE/6, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_ERROR, buf); } if (error & EF_RIGHT_MASK) { int a = (error >> (EF_RIGHT_SHIFT+2*EF_DIGIT_SHIFT))&EF_DIGIT_MASK; int b = (error >> (EF_RIGHT_SHIFT+1*EF_DIGIT_SHIFT))&EF_DIGIT_MASK; int c = (error >> (EF_RIGHT_SHIFT ))&EF_DIGIT_MASK; char buf[10]; sprintf(buf, "%c(%c%c)", TOCHAR(a, ds->par.id), TOCHAR(b, ds->par.id), TOCHAR(c, ds->par.id)); draw_text(dr, tx + TILESIZE/2, ty + TILESIZE - TILESIZE/6, FONT_VARIABLE, TILESIZE/6, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_ERROR, buf); } } else { int i, j, npencil; int pl, pr, pt, pb; float bestsize; int pw, ph, minph, pbest, fontsize; /* Count the pencil marks required. */ for (i = 1, npencil = 0; i <= w; i++) if (pencil & (1 << i)) npencil++; if (npencil) { minph = 2; /* * Determine the bounding rectangle within which we're going * to put the pencil marks. */ /* Start with the whole square */ pl = tx + GRIDEXTRA; pr = pl + TILESIZE - GRIDEXTRA; pt = ty + GRIDEXTRA; pb = pt + TILESIZE - GRIDEXTRA; /* * We arrange our pencil marks in a grid layout, with * the number of rows and columns adjusted to allow the * maximum font size. * * So now we work out what the grid size ought to be. */ bestsize = 0.0; pbest = 0; /* Minimum */ for (pw = 3; pw < max(npencil,4); pw++) { float fw, fh, fs; ph = (npencil + pw - 1) / pw; ph = max(ph, minph); fw = (pr - pl) / (float)pw; fh = (pb - pt) / (float)ph; fs = min(fw, fh); if (fs > bestsize) { bestsize = fs; pbest = pw; } } assert(pbest > 0); pw = pbest; ph = (npencil + pw - 1) / pw; ph = max(ph, minph); /* * Now we've got our grid dimensions, work out the pixel * size of a grid element, and round it to the nearest * pixel. (We don't want rounding errors to make the * grid look uneven at low pixel sizes.) */ fontsize = min((pr - pl) / pw, (pb - pt) / ph); /* * Centre the resulting figure in the square. */ pl = tx + (TILESIZE - fontsize * pw) / 2; pt = ty + (TILESIZE - fontsize * ph) / 2; /* * Now actually draw the pencil marks. */ for (i = 1, j = 0; i <= w; i++) if (pencil & (1 << i)) { int dx = j % pw, dy = j / pw; str[1] = '\0'; str[0] = TOCHAR(i, ds->par.id); draw_text(dr, pl + fontsize * (2*dx+1) / 2, pt + fontsize * (2*dy+1) / 2, FONT_VARIABLE, fontsize, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str); j++; } } } unclip(dr); draw_update(dr, cx, cy, cw, ch); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int w = state->par.w /*, a = w*w */; int x, y, i, j; if (!ds->started) { /* * Big containing rectangle. */ draw_rect(dr, COORD(0) - GRIDEXTRA, COORD(0) - GRIDEXTRA, w*TILESIZE+1+GRIDEXTRA*2, w*TILESIZE+1+GRIDEXTRA*2, COL_GRID); draw_update(dr, 0, 0, SIZE(w), SIZE(w)); ds->started = true; } check_errors(state, ds->errtmp); /* * Construct a modified version of state->sequence which takes * into account an unfinished drag operation. */ if (ui->drag) { x = ui->dragnum; y = ui->dragpos; } else { x = y = -1; } for (i = j = 0; i < w; i++) { if (i == y) { ds->sequence[i] = x; } else { if (state->sequence[j] == x) j++; ds->sequence[i] = state->sequence[j++]; } } /* * Draw the table legend. */ for (x = 0; x < w; x++) { int sx = ds->sequence[x]; long tile = (sx+1) | DF_LEGEND; if (ds->legend[x] != tile) { ds->legend[x] = tile; draw_tile(dr, ds, -1, x, tile, 0, 0); draw_tile(dr, ds, x, -1, tile, 0, 0); } } for (y = 0; y < w; y++) { int sy = ds->sequence[y]; for (x = 0; x < w; x++) { long tile = 0L, pencil = 0L, error; int sx = ds->sequence[x]; if (state->grid[sy*w+sx]) tile = state->grid[sy*w+sx]; else pencil = (long)state->pencil[sy*w+sx]; if (state->common->immutable[sy*w+sx]) tile |= DF_IMMUTABLE; if ((ui->drag == 5 && ui->dragnum == sy) || (ui->drag == 6 && ui->dragnum == sx)) { tile |= DF_HIGHLIGHT; } else if (ui->hshow) { int i = abs(x - ui->ohx); bool highlight = false; if (ui->odn > 1) { /* * When a diagonal multifill selection is shown, * we show it in its original grid position * regardless of in-progress row/col drags. Moving * every square about would be horrible. */ if (i >= 0 && i < ui->odn && x == ui->ohx + i*ui->odx && y == ui->ohy + i*ui->ody) highlight = true; } else { /* * For a single square, we move its highlight * around with the drag. */ highlight = (ui->hx == sx && ui->hy == sy); } if (highlight) tile |= (ui->hpencil ? DF_HIGHLIGHT_PENCIL : DF_HIGHLIGHT); } if (flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3)) tile |= DF_HIGHLIGHT; /* completion flash */ if (y <= 0 || state->dividers[ds->sequence[y-1]] == sy) tile |= DF_DIVIDER_TOP; if (y+1 >= w || state->dividers[sy] == ds->sequence[y+1]) tile |= DF_DIVIDER_BOT; if (x <= 0 || state->dividers[ds->sequence[x-1]] == sx) tile |= DF_DIVIDER_LEFT; if (x+1 >= w || state->dividers[sx] == ds->sequence[x+1]) tile |= DF_DIVIDER_RIGHT; error = ds->errtmp[sy*w+sx]; if (ds->tiles[y*w+x] != tile || ds->pencil[y*w+x] != pencil || ds->errors[y*w+x] != error) { ds->tiles[y*w+x] = tile; ds->pencil[y*w+x] = pencil; ds->errors[y*w+x] = error; draw_tile(dr, ds, x, y, tile, pencil, error); } } } } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { if (state->completed) return false; return true; } static void game_print_size(const game_params *params, const game_ui *ui, float *x, float *y) { int pw, ph; /* * We use 9mm squares by default, like Solo. */ game_compute_size(params, 900, ui, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, const game_ui *ui, int tilesize) { int w = state->par.w; int ink = print_mono_colour(dr, 0); int x, y; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); /* * Border. */ print_line_width(dr, 3 * TILESIZE / 40); draw_rect_outline(dr, BORDER + LEGEND, BORDER + LEGEND, w*TILESIZE, w*TILESIZE, ink); /* * Legend on table. */ for (x = 0; x < w; x++) { char str[2]; str[1] = '\0'; str[0] = TOCHAR(x+1, state->par.id); draw_text(dr, BORDER+LEGEND + x*TILESIZE + TILESIZE/2, BORDER + TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str); draw_text(dr, BORDER + TILESIZE/2, BORDER+LEGEND + x*TILESIZE + TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str); } /* * Main grid. */ for (x = 1; x < w; x++) { print_line_width(dr, TILESIZE / 40); draw_line(dr, BORDER+LEGEND+x*TILESIZE, BORDER+LEGEND, BORDER+LEGEND+x*TILESIZE, BORDER+LEGEND+w*TILESIZE, ink); } for (y = 1; y < w; y++) { print_line_width(dr, TILESIZE / 40); draw_line(dr, BORDER+LEGEND, BORDER+LEGEND+y*TILESIZE, BORDER+LEGEND+w*TILESIZE, BORDER+LEGEND+y*TILESIZE, ink); } /* * Numbers. */ for (y = 0; y < w; y++) for (x = 0; x < w; x++) if (state->grid[y*w+x]) { char str[2]; str[1] = '\0'; str[0] = TOCHAR(state->grid[y*w+x], state->par.id); draw_text(dr, BORDER+LEGEND + x*TILESIZE + TILESIZE/2, BORDER+LEGEND + y*TILESIZE + TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str); } } #ifdef COMBINED #define thegame group #endif const struct game thegame = { "Group", NULL, NULL, default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, get_prefs, set_prefs, new_ui, free_ui, NULL, /* encode_ui */ NULL, /* decode_ui */ NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILESIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, true, false, game_print_size, game_print, false, /* wants_statusbar */ false, game_timing_state, REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */ }; #ifdef STANDALONE_SOLVER #include <stdarg.h> int main(int argc, char **argv) { game_params *p; game_state *s; char *id = NULL, *desc; const char *err; digit *grid; bool grade = false; int ret, diff; bool really_show_working = false; while (--argc > 0) { char *p = *++argv; if (!strcmp(p, "-v")) { really_show_working = true; } else if (!strcmp(p, "-g")) { grade = true; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); return 1; } else { id = p; } } if (!id) { fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]); return 1; } desc = strchr(id, ':'); if (!desc) { fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); return 1; } *desc++ = '\0'; p = default_params(); decode_params(p, id); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); return 1; } s = new_game(NULL, p, desc); grid = snewn(p->w * p->w, digit); /* * When solving a Normal puzzle, we don't want to bother the * user with Hard-level deductions. For this reason, we grade * the puzzle internally before doing anything else. */ ret = -1; /* placate optimiser */ solver_show_working = 0; for (diff = 0; diff < DIFFCOUNT; diff++) { memcpy(grid, s->grid, p->w * p->w); ret = solver(&s->par, grid, diff); if (ret <= diff) break; } if (diff == DIFFCOUNT) { if (really_show_working) { solver_show_working = true; memcpy(grid, s->grid, p->w * p->w); ret = solver(&s->par, grid, DIFFCOUNT - 1); } if (grade) printf("Difficulty rating: ambiguous\n"); else printf("Unable to find a unique solution\n"); } else { if (grade) { if (ret == diff_impossible) printf("Difficulty rating: impossible (no solution exists)\n"); else printf("Difficulty rating: %s\n", group_diffnames[ret]); } else { solver_show_working = really_show_working; memcpy(grid, s->grid, p->w * p->w); ret = solver(&s->par, grid, diff); if (ret != diff) printf("Puzzle is inconsistent\n"); else { memcpy(s->grid, grid, p->w * p->w); fputs(game_text_format(s), stdout); } } } return 0; } #endif /* vim: set shiftwidth=4 tabstop=8: */