ref: 05dc356d2fb9d72405b0b2d0b36505f729d8591c
dir: /libsec/sha2_128.c/
/* * sha2 128-bit */ #include <u.h> #include <libc.h> #include <libsec.h> static void encode64(uchar*, u64int*, ulong); static DigestState* sha2_128(uchar *, ulong, uchar *, SHA2_256state *, int); extern void _sha2block128(uchar*, ulong, u64int*); /* * for sha2_384 and sha2_512, len must be multiple of 128 for all but * the last call. There must be room in the input buffer to pad. * * Note: sha2_384 calls sha2_512block as sha2_384; it just uses a different * initial seed to produce a truncated 384b hash result. otherwise * it's the same as sha2_512. */ SHA2_384state* sha2_384(uchar *p, ulong len, uchar *digest, SHA2_384state *s) { if(s == nil) { s = mallocz(sizeof(*s), 1); if(s == nil) return nil; s->malloced = 1; } if(s->seeded == 0){ /* * seed the state with the first 64 bits of the fractional * parts of the square roots of the 9th thru 16th primes. */ s->bstate[0] = 0xcbbb9d5dc1059ed8LL; s->bstate[1] = 0x629a292a367cd507LL; s->bstate[2] = 0x9159015a3070dd17LL; s->bstate[3] = 0x152fecd8f70e5939LL; s->bstate[4] = 0x67332667ffc00b31LL; s->bstate[5] = 0x8eb44a8768581511LL; s->bstate[6] = 0xdb0c2e0d64f98fa7LL; s->bstate[7] = 0x47b5481dbefa4fa4LL; s->seeded = 1; } return sha2_128(p, len, digest, s, SHA2_384dlen); } SHA2_512state* sha2_512(uchar *p, ulong len, uchar *digest, SHA2_512state *s) { if(s == nil) { s = mallocz(sizeof(*s), 1); if(s == nil) return nil; s->malloced = 1; } if(s->seeded == 0){ /* * seed the state with the first 64 bits of the fractional * parts of the square roots of the first 8 primes 2..19). */ s->bstate[0] = 0x6a09e667f3bcc908LL; s->bstate[1] = 0xbb67ae8584caa73bLL; s->bstate[2] = 0x3c6ef372fe94f82bLL; s->bstate[3] = 0xa54ff53a5f1d36f1LL; s->bstate[4] = 0x510e527fade682d1LL; s->bstate[5] = 0x9b05688c2b3e6c1fLL; s->bstate[6] = 0x1f83d9abfb41bd6bLL; s->bstate[7] = 0x5be0cd19137e2179LL; s->seeded = 1; } return sha2_128(p, len, digest, s, SHA2_512dlen); } /* common 128 byte block padding and count code for SHA2_384 and SHA2_512 */ static DigestState* sha2_128(uchar *p, ulong len, uchar *digest, SHA2_512state *s, int dlen) { int i; u64int x[16]; uchar buf[256]; uchar *e; /* fill out the partial 128 byte block from previous calls */ if(s->blen){ i = 128 - s->blen; if(len < i) i = len; memmove(s->buf + s->blen, p, i); len -= i; s->blen += i; p += i; if(s->blen == 128){ _sha2block128(s->buf, s->blen, s->bstate); s->len += s->blen; s->blen = 0; } } /* do 128 byte blocks */ i = len & ~(128-1); if(i){ _sha2block128(p, i, s->bstate); s->len += i; len -= i; p += i; } /* save the left overs if not last call */ if(digest == 0){ if(len){ memmove(s->buf, p, len); s->blen += len; } return s; } /* * this is the last time through, pad what's left with 0x80, * 0's, and the input count to create a multiple of 128 bytes. */ if(s->blen){ p = s->buf; len = s->blen; } else { memmove(buf, p, len); p = buf; } s->len += len; e = p + len; if(len < 112) i = 112 - len; else i = 240 - len; memset(e, 0, i); *e = 0x80; len += i; /* append the count */ x[0] = 0; /* assume 32b length, i.e. < 4GB */ x[1] = s->len<<3; encode64(p+len, x, 16); /* digest the last part */ _sha2block128(p, len+16, s->bstate); s->len += len+16; /* return result and free state */ encode64(digest, s->bstate, dlen); if(s->malloced == 1) free(s); return nil; } /* * Encodes input (ulong long) into output (uchar). * Assumes len is a multiple of 8. */ static void encode64(uchar *output, u64int *input, ulong len) { u64int x; uchar *e; for(e = output + len; output < e;) { x = *input++; *output++ = x >> 56; *output++ = x >> 48; *output++ = x >> 40; *output++ = x >> 32; *output++ = x >> 24; *output++ = x >> 16; *output++ = x >> 8; *output++ = x; } } DigestState* hmac_sha2_384(uchar *p, ulong len, uchar *key, ulong klen, uchar *digest, DigestState *s) { return hmac_x(p, len, key, klen, digest, s, sha2_384, SHA2_384dlen); } DigestState* hmac_sha2_512(uchar *p, ulong len, uchar *key, ulong klen, uchar *digest, DigestState *s) { return hmac_x(p, len, key, klen, digest, s, sha2_512, SHA2_512dlen); }