ref: 8b6a38b1230441d6850634dec79af0c9996bd5e8
dir: /range.c/
/* * range.c: implementation of the Nikoli game 'Kurodoko' / 'Kuromasu'. */ /* * Puzzle rules: the player is given a WxH grid of white squares, some * of which contain numbers. The goal is to paint some of the squares * black, such that: * * - no cell (err, cell = square) with a number is painted black * - no black cells have an adjacent (horz/vert) black cell * - the white cells are all connected (through other white cells) * - if a cell contains a number n, let h and v be the lengths of the * maximal horizontal and vertical white sequences containing that * cell. Then n must equal h + v - 1. */ /* example instance with its encoding and textual representation, both * solved and unsolved (made by thegame.solve and thegame.text_format) * * +--+--+--+--+--+--+--+ * | | | | | 7| | | * +--+--+--+--+--+--+--+ * | 3| | | | | | 8| * +--+--+--+--+--+--+--+ * | | | | | | 5| | * +--+--+--+--+--+--+--+ * | | | 7| | 7| | | * +--+--+--+--+--+--+--+ * | |13| | | | | | * +--+--+--+--+--+--+--+ * | 4| | | | | | 8| * +--+--+--+--+--+--+--+ * | | | 4| | | | | * +--+--+--+--+--+--+--+ * * 7x7:d7b3e8e5c7a7c13e4d8b4d * * +--+--+--+--+--+--+--+ * |..|..|..|..| 7|..|..| * +--+--+--+--+--+--+--+ * | 3|..|##|..|##|..| 8| * +--+--+--+--+--+--+--+ * |##|..|..|##|..| 5|..| * +--+--+--+--+--+--+--+ * |..|..| 7|..| 7|##|..| * +--+--+--+--+--+--+--+ * |..|13|..|..|..|..|..| * +--+--+--+--+--+--+--+ * | 4|..|##|..|##|..| 8| * +--+--+--+--+--+--+--+ * |##|..| 4|..|..|##|..| * +--+--+--+--+--+--+--+ */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include "puzzles.h" #include <stdarg.h> #define setmember(obj, field) ( (obj) . field = field ) static char *nfmtstr(int n, const char *fmt, ...) { va_list va; char *ret = snewn(n+1, char); va_start(va, fmt); vsprintf(ret, fmt, va); va_end(va); return ret; } #define SWAP(type, lvar1, lvar2) do { \ type tmp = (lvar1); \ (lvar1) = (lvar2); \ (lvar2) = tmp; \ } while (0) /* ---------------------------------------------------------------------- * Game parameters, presets, states */ typedef signed char puzzle_size; struct game_params { puzzle_size w; puzzle_size h; }; struct game_state { struct game_params params; bool has_cheated, was_solved; puzzle_size *grid; }; #define DEFAULT_PRESET 0 static struct game_params range_presets[] = {{9, 6}, {12, 8}, {13, 9}, {16, 11}}; /* rationale: I want all four combinations of {odd/even, odd/even}, as * they play out differently with respect to two-way symmetry. I also * want them to be generated relatively fast yet still be large enough * to be entertaining for a decent amount of time, and I want them to * make good use of monitor real estate (the typical screen resolution * is why I do 13x9 and not 9x13). */ static game_params *default_params(void) { game_params *ret = snew(game_params); *ret = range_presets[DEFAULT_PRESET]; /* structure copy */ return ret; } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; if (i < 0 || i >= lenof(range_presets)) return false; ret = default_params(); *ret = range_presets[i]; /* struct copy */ *params = ret; *name = nfmtstr(40, "%d x %d", range_presets[i].w, range_presets[i].h); return true; } static void free_params(game_params *params) { sfree(params); } static void decode_params(game_params *params, char const *string) { /* FIXME check for puzzle_size overflow and decoding issues */ params->w = params->h = atoi(string); while (*string && isdigit((unsigned char) *string)) ++string; if (*string == 'x') { string++; params->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } } static char *encode_params(const game_params *params, bool full) { char str[80]; sprintf(str, "%dx%d", params->w, params->h); return dupstr(str); } static config_item *game_configure(const game_params *params) { config_item *ret; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; ret[0].u.string.sval = nfmtstr(10, "%d", params->w); ret[1].name = "Height"; ret[1].type = C_STRING; ret[1].u.string.sval = nfmtstr(10, "%d", params->h); ret[2].name = NULL; ret[2].type = C_END; return ret; } static game_params *custom_params(const config_item *configuration) { game_params *ret = snew(game_params); ret->w = atoi(configuration[0].u.string.sval); ret->h = atoi(configuration[1].u.string.sval); return ret; } #define memdup(dst, src, n, type) do { \ dst = snewn(n, type); \ memcpy(dst, src, n * sizeof (type)); \ } while (0) static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); int const n = state->params.w * state->params.h; *ret = *state; /* structure copy */ /* copy the poin_tee_, set a new value of the poin_ter_ */ memdup(ret->grid, state->grid, n, puzzle_size); return ret; } static void free_game(game_state *state) { sfree(state->grid); sfree(state); } /* ---------------------------------------------------------------------- * The solver subsystem. * * The solver is used for two purposes: * - To solve puzzles when the user selects `Solve'. * - To test solubility of a grid as clues are being removed from it * during the puzzle generation. * * It supports the following ways of reasoning: * * - A cell adjacent to a black cell must be white. * * - If painting a square black would bisect the white regions, that * square is white (by finding biconnected components' cut points) * * - A cell with number n, covering at most k white squares in three * directions must white-cover n-k squares in the last direction. * * - A cell with number n known to cover k squares, if extending the * cover by one square in a given direction causes the cell to * cover _more_ than n squares, that extension cell must be black. * * (either if the square already covers n, or if it extends into a * chunk of size > n - k) * * - Recursion. Pick any cell and see if this leads to either a * contradiction or a solution (and then act appropriately). * * * TODO: * * (propagation upper limit) * - If one has two numbers on the same line, the smaller limits the * larger. Example: in |b|_|_|8|4|_|_|b|, only two _'s can be both * white and connected to the "8" cell; so that cell will propagate * at least four cells orthogonally to the displayed line (which is * better than the current "at least 2"). * * (propagation upper limit) * - cells can't propagate into other cells if doing so exceeds that * number. Example: in |b|4|.|.|2|b|, at most one _ can be white; * otherwise, the |2| would have too many reaching white cells. * * (propagation lower and upper limit) * - `Full Combo': in each four directions d_1 ... d_4, find a set of * possible propagation distances S_1 ... S_4. For each i=1..4, * for each x in S_i: if not exists (y, z, w) in the other sets * such that (x+y+z+w+1 == clue value): then remove x from S_i. * Repeat until this stabilizes. If any cell would contradict */ #define idx(i, j, w) ((i)*(w) + (j)) #define out_of_bounds(r, c, w, h) \ ((r) < 0 || (r) >= h || (c) < 0 || (c) >= w) typedef struct square { puzzle_size r, c; } square; enum {BLACK = -2, WHITE, EMPTY}; /* white is for pencil marks, empty is undecided */ static int const dr[4] = {+1, 0, -1, 0}; static int const dc[4] = { 0, +1, 0, -1}; static int const cursors[4] = /* must match dr and dc */ {CURSOR_DOWN, CURSOR_RIGHT, CURSOR_UP, CURSOR_LEFT}; typedef struct move { square square; unsigned int colour: 1; } move; enum {M_BLACK = 0, M_WHITE = 1}; typedef move *(reasoning)(game_state *state, int nclues, const square *clues, move *buf); static reasoning solver_reasoning_not_too_big; static reasoning solver_reasoning_adjacency; static reasoning solver_reasoning_connectedness; static reasoning solver_reasoning_recursion; enum { DIFF_NOT_TOO_BIG, DIFF_ADJACENCY, DIFF_CONNECTEDNESS, DIFF_RECURSION }; static move *solve_internal(const game_state *state, move *base, int diff); static char *solve_game(const game_state *orig, const game_state *curpos, const char *aux, const char **error) { int const n = orig->params.w * orig->params.h; move *const base = snewn(n, move); move *moves = solve_internal(orig, base, DIFF_RECURSION); char *ret = NULL; if (moves != NULL) { int const k = moves - base; char *str = ret = snewn(15*k + 2, char); char colour[2] = "BW"; move *it; *str++ = 'S'; *str = '\0'; for (it = base; it < moves; ++it) str += sprintf(str, "%c,%d,%d", colour[it->colour], it->square.r, it->square.c); } else *error = "This puzzle instance contains a contradiction"; sfree(base); return ret; } static square *find_clues(const game_state *state, int *ret_nclues); static move *do_solve(game_state *state, int nclues, const square *clues, move *move_buffer, int difficulty); /* new_game_desc entry point in the solver subsystem */ static move *solve_internal(const game_state *state, move *base, int diff) { int nclues; square *const clues = find_clues(state, &nclues); game_state *dup = dup_game(state); move *const moves = do_solve(dup, nclues, clues, base, diff); free_game(dup); sfree(clues); return moves; } static reasoning *const reasonings[] = { solver_reasoning_not_too_big, solver_reasoning_adjacency, solver_reasoning_connectedness, solver_reasoning_recursion }; static move *do_solve(game_state *state, int nclues, const square *clues, move *move_buffer, int difficulty) { struct move *buf = move_buffer, *oldbuf; int i; do { oldbuf = buf; for (i = 0; i < lenof(reasonings) && i <= difficulty; ++i) { /* only recurse if all else fails */ if (i == DIFF_RECURSION && buf > oldbuf) continue; buf = (*reasonings[i])(state, nclues, clues, buf); if (buf == NULL) return NULL; } } while (buf > oldbuf); return buf; } #define MASK(n) (1 << ((n) + 2)) static int runlength(puzzle_size r, puzzle_size c, puzzle_size dr, puzzle_size dc, const game_state *state, int colourmask) { int const w = state->params.w, h = state->params.h; int sz = 0; while (true) { int cell = idx(r, c, w); if (out_of_bounds(r, c, w, h)) break; if (state->grid[cell] > 0) { if (!(colourmask & ~(MASK(BLACK) | MASK(WHITE) | MASK(EMPTY)))) break; } else if (!(MASK(state->grid[cell]) & colourmask)) break; ++sz; r += dr; c += dc; } return sz; } static void solver_makemove(puzzle_size r, puzzle_size c, int colour, game_state *state, move **buffer_ptr) { int const cell = idx(r, c, state->params.w); if (out_of_bounds(r, c, state->params.w, state->params.h)) return; if (state->grid[cell] != EMPTY) return; setmember((*buffer_ptr)->square, r); setmember((*buffer_ptr)->square, c); setmember(**buffer_ptr, colour); ++*buffer_ptr; state->grid[cell] = (colour == M_BLACK ? BLACK : WHITE); } static move *solver_reasoning_adjacency(game_state *state, int nclues, const square *clues, move *buf) { int r, c, i; for (r = 0; r < state->params.h; ++r) for (c = 0; c < state->params.w; ++c) { int const cell = idx(r, c, state->params.w); if (state->grid[cell] != BLACK) continue; for (i = 0; i < 4; ++i) solver_makemove(r + dr[i], c + dc[i], M_WHITE, state, &buf); } return buf; } enum {NOT_VISITED = -1}; static int dfs_biconnect_visit(puzzle_size r, puzzle_size c, game_state *state, square *dfs_parent, int *dfs_depth, move **buf); static move *solver_reasoning_connectedness(game_state *state, int nclues, const square *clues, move *buf) { int const w = state->params.w, h = state->params.h, n = w * h; square *const dfs_parent = snewn(n, square); int *const dfs_depth = snewn(n, int); int i; for (i = 0; i < n; ++i) { dfs_parent[i].r = NOT_VISITED; dfs_depth[i] = -n; } for (i = 0; i < n && state->grid[i] == BLACK; ++i); dfs_parent[i].r = i / w; dfs_parent[i].c = i % w; /* `dfs root`.parent == `dfs root` */ dfs_depth[i] = 0; dfs_biconnect_visit(i / w, i % w, state, dfs_parent, dfs_depth, &buf); sfree(dfs_parent); sfree(dfs_depth); return buf; } /* returns the `lowpoint` of (r, c) */ static int dfs_biconnect_visit(puzzle_size r, puzzle_size c, game_state *state, square *dfs_parent, int *dfs_depth, move **buf) { const puzzle_size w = state->params.w, h = state->params.h; int const i = idx(r, c, w), mydepth = dfs_depth[i]; int lowpoint = mydepth, j, nchildren = 0; for (j = 0; j < 4; ++j) { const puzzle_size rr = r + dr[j], cc = c + dc[j]; int const cell = idx(rr, cc, w); if (out_of_bounds(rr, cc, w, h)) continue; if (state->grid[cell] == BLACK) continue; if (dfs_parent[cell].r == NOT_VISITED) { int child_lowpoint; dfs_parent[cell].r = r; dfs_parent[cell].c = c; dfs_depth[cell] = mydepth + 1; child_lowpoint = dfs_biconnect_visit(rr, cc, state, dfs_parent, dfs_depth, buf); if (child_lowpoint >= mydepth && mydepth > 0) solver_makemove(r, c, M_WHITE, state, buf); lowpoint = min(lowpoint, child_lowpoint); ++nchildren; } else if (rr != dfs_parent[i].r || cc != dfs_parent[i].c) { lowpoint = min(lowpoint, dfs_depth[cell]); } } if (mydepth == 0 && nchildren >= 2) solver_makemove(r, c, M_WHITE, state, buf); return lowpoint; } static move *solver_reasoning_not_too_big(game_state *state, int nclues, const square *clues, move *buf) { int const w = state->params.w, runmasks[4] = { ~(MASK(BLACK) | MASK(EMPTY)), MASK(EMPTY), ~(MASK(BLACK) | MASK(EMPTY)), ~(MASK(BLACK)) }; enum {RUN_WHITE, RUN_EMPTY, RUN_BEYOND, RUN_SPACE}; int i, runlengths[4][4]; for (i = 0; i < nclues; ++i) { int j, k, whites, space; const puzzle_size row = clues[i].r, col = clues[i].c; int const clue = state->grid[idx(row, col, w)]; for (j = 0; j < 4; ++j) { puzzle_size r = row + dr[j], c = col + dc[j]; runlengths[RUN_SPACE][j] = 0; for (k = 0; k <= RUN_SPACE; ++k) { int l = runlength(r, c, dr[j], dc[j], state, runmasks[k]); if (k < RUN_SPACE) { runlengths[k][j] = l; r += dr[j] * l; c += dc[j] * l; } runlengths[RUN_SPACE][j] += l; } } whites = 1; for (j = 0; j < 4; ++j) whites += runlengths[RUN_WHITE][j]; for (j = 0; j < 4; ++j) { int const delta = 1 + runlengths[RUN_WHITE][j]; const puzzle_size r = row + delta * dr[j]; const puzzle_size c = col + delta * dc[j]; if (whites == clue) { solver_makemove(r, c, M_BLACK, state, &buf); continue; } if (runlengths[RUN_EMPTY][j] == 1 && whites + runlengths[RUN_EMPTY][j] + runlengths[RUN_BEYOND][j] > clue) { solver_makemove(r, c, M_BLACK, state, &buf); continue; } if (whites + runlengths[RUN_EMPTY][j] + runlengths[RUN_BEYOND][j] > clue) { runlengths[RUN_SPACE][j] = runlengths[RUN_WHITE][j] + runlengths[RUN_EMPTY][j] - 1; if (runlengths[RUN_EMPTY][j] == 1) solver_makemove(r, c, M_BLACK, state, &buf); } } space = 1; for (j = 0; j < 4; ++j) space += runlengths[RUN_SPACE][j]; for (j = 0; j < 4; ++j) { puzzle_size r = row + dr[j], c = col + dc[j]; int k = space - runlengths[RUN_SPACE][j]; if (k >= clue) continue; for (; k < clue; ++k, r += dr[j], c += dc[j]) solver_makemove(r, c, M_WHITE, state, &buf); } } return buf; } static move *solver_reasoning_recursion(game_state *state, int nclues, const square *clues, move *buf) { int const w = state->params.w, n = w * state->params.h; int cell, colour; for (cell = 0; cell < n; ++cell) { int const r = cell / w, c = cell % w; int i; game_state *newstate; move *recursive_result; if (state->grid[cell] != EMPTY) continue; /* FIXME: add enum alias for smallest and largest (or N) */ for (colour = M_BLACK; colour <= M_WHITE; ++colour) { newstate = dup_game(state); newstate->grid[cell] = colour == M_BLACK ? BLACK : WHITE; recursive_result = do_solve(newstate, nclues, clues, buf, DIFF_RECURSION); if (recursive_result == NULL) { free_game(newstate); solver_makemove(r, c, M_BLACK + M_WHITE - colour, state, &buf); return buf; } for (i = 0; i < n && newstate->grid[i] != EMPTY; ++i); free_game(newstate); if (i == n) return buf; } } return buf; } static square *find_clues(const game_state *state, int *ret_nclues) { int r, c, i, nclues = 0; square *ret = snewn(state->params.w * state->params.h, struct square); for (i = r = 0; r < state->params.h; ++r) for (c = 0; c < state->params.w; ++c, ++i) if (state->grid[i] > 0) { ret[nclues].r = r; ret[nclues].c = c; ++nclues; } *ret_nclues = nclues; return sresize(ret, nclues + (nclues == 0), square); } /* ---------------------------------------------------------------------- * Puzzle generation * * Generating kurodoko instances is rather straightforward: * * - Start with a white grid and add black squares at randomly chosen * locations, unless colouring that square black would violate * either the adjacency or connectedness constraints. * * - For each white square, compute the number it would contain if it * were given as a clue. * * - From a starting point of "give _every_ white square as a clue", * for each white square (in a random order), see if the board is * solvable when that square is not given as a clue. If not, don't * give it as a clue, otherwise do. * * This never fails, but it's only _almost_ what I do. The real final * step is this: * * - From a starting point of "give _every_ white square as a clue", * first remove all clues that are two-way rotationally symmetric * to a black square. If this leaves the puzzle unsolvable, throw * it out and try again. Otherwise, remove all _pairs_ of clues * (that are rotationally symmetric) which can be removed without * rendering the puzzle unsolvable. * * This can fail even if one only removes the black and symmetric * clues; indeed it happens often (avg. once or twice per puzzle) when * generating 1xN instances. (If you add black cells they must be in * the end, and if you only add one, it's ambiguous where). */ /* forward declarations of internal calls */ static void newdesc_choose_black_squares(game_state *state, const int *shuffle_1toN); static void newdesc_compute_clues(game_state *state); static int newdesc_strip_clues(game_state *state, int *shuffle_1toN); static char *newdesc_encode_game_description(int n, puzzle_size *grid); static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { int const w = params->w, h = params->h, n = w * h; puzzle_size *const grid = snewn(n, puzzle_size); int *const shuffle_1toN = snewn(n, int); int i, clues_removed; char *encoding; game_state state; state.params = *params; state.grid = grid; interactive = false; /* I don't need it, I shouldn't use it*/ for (i = 0; i < n; ++i) shuffle_1toN[i] = i; while (true) { shuffle(shuffle_1toN, n, sizeof (int), rs); newdesc_choose_black_squares(&state, shuffle_1toN); newdesc_compute_clues(&state); shuffle(shuffle_1toN, n, sizeof (int), rs); clues_removed = newdesc_strip_clues(&state, shuffle_1toN); if (clues_removed < 0) continue; else break; } encoding = newdesc_encode_game_description(n, grid); sfree(grid); sfree(shuffle_1toN); return encoding; } static int dfs_count_white(game_state *state, int cell); static void newdesc_choose_black_squares(game_state *state, const int *shuffle_1toN) { int const w = state->params.w, h = state->params.h, n = w * h; int k, any_white_cell, n_black_cells; for (k = 0; k < n; ++k) state->grid[k] = WHITE; any_white_cell = shuffle_1toN[n - 1]; n_black_cells = 0; /* I like the puzzles that result from n / 3, but maybe this * could be made a (generation, i.e. non-full) parameter? */ for (k = 0; k < n / 3; ++k) { int const i = shuffle_1toN[k], c = i % w, r = i / w; int j; for (j = 0; j < 4; ++j) { int const rr = r + dr[j], cc = c + dc[j], cell = idx(rr, cc, w); /* if you're out of bounds, we skip you */ if (out_of_bounds(rr, cc, w, h)) continue; if (state->grid[cell] == BLACK) break; /* I can't be black */ } if (j < 4) continue; /* I have black neighbour: I'm white */ state->grid[i] = BLACK; ++n_black_cells; j = dfs_count_white(state, any_white_cell); if (j + n_black_cells < n) { state->grid[i] = WHITE; --n_black_cells; } } } static void newdesc_compute_clues(game_state *state) { int const w = state->params.w, h = state->params.h; int r, c; for (r = 0; r < h; ++r) { int run_size = 0, c, cc; for (c = 0; c <= w; ++c) { if (c == w || state->grid[idx(r, c, w)] == BLACK) { for (cc = c - run_size; cc < c; ++cc) state->grid[idx(r, cc, w)] += run_size; run_size = 0; } else ++run_size; } } for (c = 0; c < w; ++c) { int run_size = 0, r, rr; for (r = 0; r <= h; ++r) { if (r == h || state->grid[idx(r, c, w)] == BLACK) { for (rr = r - run_size; rr < r; ++rr) state->grid[idx(rr, c, w)] += run_size; run_size = 0; } else ++run_size; } } } #define rotate(x) (n - 1 - (x)) static int newdesc_strip_clues(game_state *state, int *shuffle_1toN) { int const w = state->params.w, n = w * state->params.h; move *const move_buffer = snewn(n, move); move *buf; game_state *dupstate; /* * do a partition/pivot of shuffle_1toN into three groups: * (1) squares rotationally-symmetric to (3) * (2) squares not in (1) or (3) * (3) black squares * * They go from [0, left), [left, right) and [right, n) in * shuffle_1toN (and from there into state->grid[ ]) * * Then, remove clues from the grid one by one in shuffle_1toN * order, until the solver becomes unhappy. If we didn't remove * all of (1), return (-1). Else, we're happy. */ /* do the partition */ int clues_removed, k = 0, left = 0, right = n; for (;; ++k) { while (k < right && state->grid[shuffle_1toN[k]] == BLACK) { --right; SWAP(int, shuffle_1toN[right], shuffle_1toN[k]); assert(state->grid[shuffle_1toN[right]] == BLACK); } if (k >= right) break; assert (k >= left); if (state->grid[rotate(shuffle_1toN[k])] == BLACK) { SWAP(int, shuffle_1toN[k], shuffle_1toN[left]); ++left; } assert (state->grid[rotate(shuffle_1toN[k])] != BLACK || k == left - 1); } for (k = 0; k < left; ++k) { assert (state->grid[rotate(shuffle_1toN[k])] == BLACK); state->grid[shuffle_1toN[k]] = EMPTY; } for (k = left; k < right; ++k) { assert (state->grid[rotate(shuffle_1toN[k])] != BLACK); assert (state->grid[shuffle_1toN[k]] != BLACK); } for (k = right; k < n; ++k) { assert (state->grid[shuffle_1toN[k]] == BLACK); state->grid[shuffle_1toN[k]] = EMPTY; } clues_removed = (left - 0) + (n - right); dupstate = dup_game(state); buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1); free_game(dupstate); if (buf - move_buffer < clues_removed) { /* branch prediction: I don't think I'll go here */ clues_removed = -1; goto ret; } for (k = left; k < right; ++k) { const int i = shuffle_1toN[k], j = rotate(i); int const clue = state->grid[i], clue_rot = state->grid[j]; if (clue == BLACK) continue; state->grid[i] = state->grid[j] = EMPTY; dupstate = dup_game(state); buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1); free_game(dupstate); clues_removed += 2 - (i == j); /* if i is the center square, then i == (j = rotate(i)) * when i and j are one, removing i and j removes only one */ if (buf - move_buffer == clues_removed) continue; /* if the solver is sound, refilling all removed clues means * we have filled all squares, i.e. solved the puzzle. */ state->grid[i] = clue; state->grid[j] = clue_rot; clues_removed -= 2 - (i == j); } ret: sfree(move_buffer); return clues_removed; } static int dfs_count_rec(puzzle_size *grid, int r, int c, int w, int h) { int const cell = idx(r, c, w); if (out_of_bounds(r, c, w, h)) return 0; if (grid[cell] != WHITE) return 0; grid[cell] = EMPTY; return 1 + dfs_count_rec(grid, r + 0, c + 1, w, h) + dfs_count_rec(grid, r + 0, c - 1, w, h) + dfs_count_rec(grid, r + 1, c + 0, w, h) + dfs_count_rec(grid, r - 1, c + 0, w, h); } static int dfs_count_white(game_state *state, int cell) { int const w = state->params.w, h = state->params.h, n = w * h; int const r = cell / w, c = cell % w; int i, k = dfs_count_rec(state->grid, r, c, w, h); for (i = 0; i < n; ++i) if (state->grid[i] == EMPTY) state->grid[i] = WHITE; return k; } static const char *validate_params(const game_params *params, bool full) { int const w = params->w, h = params->h; if (w < 1) return "Error: width is less than 1"; if (h < 1) return "Error: height is less than 1"; if (w > SCHAR_MAX - (h - 1)) return "Error: w + h is too big"; if (w * h < 1) return "Error: size is less than 1"; /* I might be unable to store clues in my puzzle_size *grid; */ if (full) { if (w == 2 && h == 2) return "Error: can't create 2x2 puzzles"; if (w == 1 && h == 2) return "Error: can't create 1x2 puzzles"; if (w == 2 && h == 1) return "Error: can't create 2x1 puzzles"; if (w == 1 && h == 1) return "Error: can't create 1x1 puzzles"; } return NULL; } /* Definition: a puzzle instance is _good_ if: * - it has a unique solution * - the solver can find this solution without using recursion * - the solution contains at least one black square * - the clues are 2-way rotationally symmetric * * (the idea being: the generator can not output any _bad_ puzzles) * * Theorem: validate_params, when full != 0, discards exactly the set * of parameters for which there are _no_ good puzzle instances. * * Proof: it's an immediate consequence of the five lemmas below. * * Observation: not only do puzzles on non-tiny grids exist, the * generator is pretty fast about coming up with them. On my pre-2004 * desktop box, it generates 100 puzzles on the highest preset (16x11) * in 8.383 seconds, or <= 0.1 second per puzzle. * * ---------------------------------------------------------------------- * * Lemma: On a 1x1 grid, there are no good puzzles. * * Proof: the one square can't be a clue because at least one square * is black. But both a white square and a black square satisfy the * solution criteria, so the puzzle is ambiguous (and hence bad). * * Lemma: On a 1x2 grid, there are no good puzzles. * * Proof: let's name the squares l and r. Note that there can be at * most one black square, or adjacency is violated. By assumption at * least one square is black, so let's call that one l. By clue * symmetry, neither l nor r can be given as a clue, so the puzzle * instance is blank and thus ambiguous. * * Corollary: On a 2x1 grid, there are no good puzzles. * Proof: rotate the above proof 90 degrees ;-) * * ---------------------------------------------------------------------- * * Lemma: On a 2x2 grid, there are no soluble puzzles with 2-way * rotational symmetric clues and at least one black square. * * Proof: Let's name the squares a, b, c, and d, with a and b on the * top row, a and c in the left column. Let's consider the case where * a is black. Then no other square can be black: b and c would both * violate the adjacency constraint; d would disconnect b from c. * * So exactly one square is black (and by 4-way rotation symmetry of * the 2x2 square, it doesn't matter which one, so let's stick to a). * By 2-way rotational symmetry of the clues and the rule about not * painting numbers black, neither a nor d can be clues. A blank * puzzle would be ambiguous, so one of {b, c} is a clue; by symmetry, * so is the other one. * * It is readily seen that their clue value is 2. But "a is black" * and "d is black" are both valid solutions in this case, so the * puzzle is ambiguous (and hence bad). * * ---------------------------------------------------------------------- * * Lemma: On a wxh grid with w, h >= 1 and (w > 2 or h > 2), there is * at least one good puzzle. * * Proof: assume that w > h (otherwise rotate the proof again). Paint * the top left and bottom right corners black, and fill a clue into * all the other squares. Present this board to the solver code (or * player, hypothetically), except with the two black squares as blank * squares. * * For an Nx1 puzzle, observe that every clue is N - 2, and there are * N - 2 of them in one connected sequence, so the remaining two * squares can be deduced to be black, which solves the puzzle. * * For any other puzzle, let j be a cell in the same row as a black * cell, but not in the same column (such a cell doesn't exist in 2x3 * puzzles, but we assume w > h and such cells exist in 3x2 puzzles). * * Note that the number of cells in axis parallel `rays' going out * from j exceeds j's clue value by one. Only one such cell is a * non-clue, so it must be black. Similarly for the other corner (let * j' be a cell in the same row as the _other_ black cell, but not in * the same column as _any_ black cell; repeat this argument at j'). * * This fills the grid and satisfies all clues and the adjacency * constraint and doesn't paint on top of any clues. All that is left * to see is connectedness. * * Observe that the white cells in each column form a single connected * `run', and each column contains a white cell adjacent to a white * cell in the column to the right, if that column exists. * * Thus, any cell in the left-most column can reach any other cell: * first go to the target column (by repeatedly going to the cell in * your current column that lets you go right, then going right), then * go up or down to the desired cell. * * As reachability is symmetric (in undirected graphs) and transitive, * any cell can reach any left-column cell, and from there any other * cell. */ /* ---------------------------------------------------------------------- * Game encoding and decoding */ #define NDIGITS_BASE '!' static char *newdesc_encode_game_description(int area, puzzle_size *grid) { char *desc = NULL; int desclen = 0, descsize = 0; int run, i; run = 0; for (i = 0; i <= area; i++) { int n = (i < area ? grid[i] : -1); if (!n) run++; else { if (descsize < desclen + 40) { descsize = desclen * 3 / 2 + 40; desc = sresize(desc, descsize, char); } if (run) { while (run > 0) { int c = 'a' - 1 + run; if (run > 26) c = 'z'; desc[desclen++] = c; run -= c - ('a' - 1); } } else { /* * If there's a number in the very top left or * bottom right, there's no point putting an * unnecessary _ before or after it. */ if (desclen > 0 && n > 0) desc[desclen++] = '_'; } if (n > 0) desclen += sprintf(desc+desclen, "%d", n); run = 0; } } desc[desclen] = '\0'; return desc; } static const char *validate_desc(const game_params *params, const char *desc) { int const n = params->w * params->h; int squares = 0; int range = params->w + params->h - 1; /* maximum cell value */ while (*desc && *desc != ',') { int c = *desc++; if (c >= 'a' && c <= 'z') { squares += c - 'a' + 1; } else if (c == '_') { /* do nothing */; } else if (c > '0' && c <= '9') { int val = atoi(desc-1); if (val < 1 || val > range) return "Out-of-range number in game description"; squares++; while (*desc >= '0' && *desc <= '9') desc++; } else return "Invalid character in game description"; } if (squares < n) return "Not enough data to fill grid"; if (squares > n) return "Too much data to fit in grid"; return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int i; const char *p; int const n = params->w * params->h; game_state *state = snew(game_state); me = NULL; /* I don't need it, I shouldn't use it */ state->params = *params; /* structure copy */ state->grid = snewn(n, puzzle_size); p = desc; i = 0; while (i < n && *p) { int c = *p++; if (c >= 'a' && c <= 'z') { int squares = c - 'a' + 1; while (squares--) state->grid[i++] = 0; } else if (c == '_') { /* do nothing */; } else if (c > '0' && c <= '9') { int val = atoi(p-1); assert(val >= 1 && val <= params->w+params->h-1); state->grid[i++] = val; while (*p >= '0' && *p <= '9') p++; } } assert(i == n); state->has_cheated = false; state->was_solved = false; return state; } /* ---------------------------------------------------------------------- * User interface: ascii */ static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { int r, c, i, w_string, h_string, n_string; char cellsize; char *ret, *buf, *gridline; int const w = state->params.w, h = state->params.h; cellsize = 0; /* or may be used uninitialized */ for (c = 0; c < w; ++c) { for (r = 0; r < h; ++r) { puzzle_size k = state->grid[idx(r, c, w)]; int d; for (d = 0; k; k /= 10, ++d); cellsize = max(cellsize, d); } } ++cellsize; w_string = w * cellsize + 2; /* "|%d|%d|...|\n" */ h_string = 2 * h + 1; /* "+--+--+...+\n%s\n+--+--+...+\n" */ n_string = w_string * h_string; gridline = snewn(w_string + 1, char); /* +1: NUL terminator */ memset(gridline, '-', w_string); for (c = 0; c <= w; ++c) gridline[c * cellsize] = '+'; gridline[w_string - 1] = '\n'; gridline[w_string - 0] = '\0'; buf = ret = snewn(n_string + 1, char); /* +1: NUL terminator */ for (i = r = 0; r < h; ++r) { memcpy(buf, gridline, w_string); buf += w_string; for (c = 0; c < w; ++c, ++i) { char ch; switch (state->grid[i]) { case BLACK: ch = '#'; break; case WHITE: ch = '.'; break; case EMPTY: ch = ' '; break; default: buf += sprintf(buf, "|%*d", cellsize - 1, state->grid[i]); continue; } *buf++ = '|'; memset(buf, ch, cellsize - 1); buf += cellsize - 1; } buf += sprintf(buf, "|\n"); } memcpy(buf, gridline, w_string); buf += w_string; assert (buf - ret == n_string); *buf = '\0'; sfree(gridline); return ret; } /* ---------------------------------------------------------------------- * User interfaces: interactive */ struct game_ui { puzzle_size r, c; /* cursor position */ bool cursor_show; /* * User preference option to swap the left and right mouse * buttons. * * The original puzzle submitter thought it would be more useful * to have the left button turn an empty square into a dotted one, * on the grounds that that was what you did most often; I (SGT) * felt instinctively that the left button ought to place black * squares and the right button place dots, on the grounds that * that was consistent with many other puzzles in which the left * button fills in the data used by the solution checker while the * right button places pencil marks for the user's convenience. * * My first beta-player wasn't sure either, so I thought I'd * pre-emptively put in a 'configuration' mechanism just in case. */ bool swap_buttons; }; static void legacy_prefs_override(struct game_ui *ui_out) { static int initialised = false; static int swap_buttons = -1; if (!initialised) { initialised = true; swap_buttons = getenv_bool("RANGE_SWAP_BUTTONS", -1); } if (swap_buttons != -1) ui_out->swap_buttons = swap_buttons; } static game_ui *new_ui(const game_state *state) { struct game_ui *ui = snew(game_ui); ui->r = ui->c = 0; ui->cursor_show = getenv_bool("PUZZLES_SHOW_CURSOR", false); ui->swap_buttons = false; legacy_prefs_override(ui); return ui; } static config_item *get_prefs(game_ui *ui) { config_item *ret; ret = snewn(2, config_item); ret[0].name = "Mouse button order"; ret[0].kw = "left-mouse-button"; ret[0].type = C_CHOICES; ret[0].u.choices.choicenames = ":Left to fill, right to dot:Left to dot, right to fill"; ret[0].u.choices.choicekws = ":fill:dot"; ret[0].u.choices.selected = ui->swap_buttons; ret[1].name = NULL; ret[1].type = C_END; return ret; } static void set_prefs(game_ui *ui, const config_item *cfg) { ui->swap_buttons = cfg[0].u.choices.selected; } static void free_ui(game_ui *ui) { sfree(ui); } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { int cell; if (IS_CURSOR_SELECT(button)) { cell = state->grid[idx(ui->r, ui->c, state->params.w)]; if (!ui->cursor_show || cell > 0) return ""; switch (cell) { case EMPTY: return button == CURSOR_SELECT ? "Fill" : "Dot"; case WHITE: return button == CURSOR_SELECT ? "Empty" : "Fill"; case BLACK: return button == CURSOR_SELECT ? "Dot" : "Empty"; } } return ""; } typedef struct drawcell { puzzle_size value; bool error, cursor, flash; } drawcell; struct game_drawstate { int tilesize; drawcell *grid; }; #define TILESIZE (ds->tilesize) #define BORDER (TILESIZE / 2) #define COORD(x) ((x) * TILESIZE + BORDER) #define FROMCOORD(x) (((x) - BORDER) / TILESIZE) static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { enum {none, forwards, backwards, hint}; int const w = state->params.w, h = state->params.h; int r = ui->r, c = ui->c, action = none, cell; bool shift = button & MOD_SHFT; button &= ~MOD_SHFT; if (IS_CURSOR_SELECT(button) && !ui->cursor_show) return NULL; if (IS_MOUSE_DOWN(button)) { r = FROMCOORD(y + TILESIZE) - 1; /* or (x, y) < TILESIZE) */ c = FROMCOORD(x + TILESIZE) - 1; /* are considered inside */ if (out_of_bounds(r, c, w, h)) return NULL; ui->r = r; ui->c = c; ui->cursor_show = false; } if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { if (ui->swap_buttons) { if (button == LEFT_BUTTON) button = RIGHT_BUTTON; else button = LEFT_BUTTON; } } switch (button) { case CURSOR_SELECT : case LEFT_BUTTON: action = backwards; break; case CURSOR_SELECT2: case RIGHT_BUTTON: action = forwards; break; case 'h': case 'H' : action = hint; break; case CURSOR_UP: case CURSOR_DOWN: case CURSOR_LEFT: case CURSOR_RIGHT: if (ui->cursor_show) { int i; for (i = 0; i < 4 && cursors[i] != button; ++i); assert (i < 4); if (shift) { int pre_r = r, pre_c = c; bool do_pre, do_post; cell = state->grid[idx(r, c, state->params.w)]; do_pre = (cell == EMPTY); if (out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) { if (do_pre) return nfmtstr(40, "W,%d,%d", pre_r, pre_c); else return NULL; } ui->r += dr[i]; ui->c += dc[i]; cell = state->grid[idx(ui->r, ui->c, state->params.w)]; do_post = (cell == EMPTY); /* (do_pre ? "..." : "") concat (do_post ? "..." : "") */ if (do_pre && do_post) return nfmtstr(80, "W,%d,%dW,%d,%d", pre_r, pre_c, ui->r, ui->c); else if (do_pre) return nfmtstr(40, "W,%d,%d", pre_r, pre_c); else if (do_post) return nfmtstr(40, "W,%d,%d", ui->r, ui->c); else return MOVE_UI_UPDATE; } else if (!out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) { ui->r += dr[i]; ui->c += dc[i]; } } else ui->cursor_show = true; return MOVE_UI_UPDATE; } if (action == hint) { move *end, *buf = snewn(state->params.w * state->params.h, struct move); char *ret = NULL; end = solve_internal(state, buf, DIFF_RECURSION); if (end != NULL && end > buf) { ret = nfmtstr(40, "%c,%d,%d", buf->colour == M_BLACK ? 'B' : 'W', buf->square.r, buf->square.c); /* We used to set a flag here in the game_ui indicating * that the player had used the hint function. I (SGT) * retired it, on grounds of consistency with other games * (most of these games will still flash to indicate * completion if you solved and undid it, so why not if * you got a hint?) and because the flash is as much about * checking you got it all right than about congratulating * you on a job well done. */ } sfree(buf); return ret; } cell = state->grid[idx(r, c, state->params.w)]; if (cell > 0) return NULL; if (action == forwards) switch (cell) { case EMPTY: return nfmtstr(40, "W,%d,%d", r, c); case WHITE: return nfmtstr(40, "B,%d,%d", r, c); case BLACK: return nfmtstr(40, "E,%d,%d", r, c); } else if (action == backwards) switch (cell) { case BLACK: return nfmtstr(40, "W,%d,%d", r, c); case WHITE: return nfmtstr(40, "E,%d,%d", r, c); case EMPTY: return nfmtstr(40, "B,%d,%d", r, c); } return NULL; } static bool find_errors(const game_state *state, bool *report) { int const w = state->params.w, h = state->params.h, n = w * h; DSF *dsf; int r, c, i; int nblack = 0, any_white_cell = -1; game_state *dup = dup_game(state); for (i = r = 0; r < h; ++r) for (c = 0; c < w; ++c, ++i) { switch (state->grid[i]) { case BLACK: { int j; ++nblack; for (j = 0; j < 4; ++j) { int const rr = r + dr[j], cc = c + dc[j]; if (out_of_bounds(rr, cc, w, h)) continue; if (state->grid[idx(rr, cc, w)] != BLACK) continue; if (!report) goto found_error; report[i] = true; break; } } break; default: { int j, runs; for (runs = 1, j = 0; j < 4; ++j) { int const rr = r + dr[j], cc = c + dc[j]; runs += runlength(rr, cc, dr[j], dc[j], state, ~MASK(BLACK)); } if (!report) { if (runs != state->grid[i]) goto found_error; } else if (runs < state->grid[i]) report[i] = true; else { for (runs = 1, j = 0; j < 4; ++j) { int const rr = r + dr[j], cc = c + dc[j]; runs += runlength(rr, cc, dr[j], dc[j], state, ~(MASK(BLACK) | MASK(EMPTY))); } if (runs > state->grid[i]) report[i] = true; } } /* note: fallthrough _into_ these cases */ case EMPTY: case WHITE: any_white_cell = i; } } /* * Check that all the white cells form a single connected component. */ dsf = dsf_new(n); for (r = 0; r < h-1; ++r) for (c = 0; c < w; ++c) if (state->grid[r*w+c] != BLACK && state->grid[(r+1)*w+c] != BLACK) dsf_merge(dsf, r*w+c, (r+1)*w+c); for (r = 0; r < h; ++r) for (c = 0; c < w-1; ++c) if (state->grid[r*w+c] != BLACK && state->grid[r*w+(c+1)] != BLACK) dsf_merge(dsf, r*w+c, r*w+(c+1)); if (any_white_cell != -1 && nblack + dsf_size(dsf, any_white_cell) < n) { int biggest, canonical; if (!report) { dsf_free(dsf); goto found_error; } /* * Report this error by choosing one component to be the * canonical one (we pick the largest, arbitrarily * tie-breaking towards lower array indices) and highlighting * as an error any square in a different component. */ canonical = -1; biggest = 0; for (i = 0; i < n; ++i) if (state->grid[i] != BLACK) { int size = dsf_size(dsf, i); if (size > biggest) { biggest = size; canonical = dsf_canonify(dsf, i); } } for (i = 0; i < n; ++i) if (state->grid[i] != BLACK && dsf_canonify(dsf, i) != canonical) report[i] = true; } dsf_free(dsf); free_game(dup); return false; /* if report != NULL, this is ignored */ found_error: free_game(dup); return true; } static game_state *execute_move(const game_state *state, const char *move) { signed int r, c, value, nchars, ntok; signed char what_to_do; game_state *ret; assert (move); ret = dup_game(state); if (*move == 'S') { ++move; ret->has_cheated = ret->was_solved = true; } for (; *move; move += nchars) { ntok = sscanf(move, "%c,%d,%d%n", &what_to_do, &r, &c, &nchars); if (ntok < 3) goto failure; switch (what_to_do) { case 'W': value = WHITE; break; case 'E': value = EMPTY; break; case 'B': value = BLACK; break; default: goto failure; } if (out_of_bounds(r, c, ret->params.w, ret->params.h)) goto failure; ret->grid[idx(r, c, ret->params.w)] = value; } if (!ret->was_solved) ret->was_solved = !find_errors(ret, NULL); return ret; failure: free_game(ret); return NULL; } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } #define FLASH_TIME 0.7F static float game_flash_length(const game_state *from, const game_state *to, int dir, game_ui *ui) { if (!from->was_solved && to->was_solved && !to->has_cheated) return FLASH_TIME; return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cursor_show) { *x = BORDER + TILESIZE * ui->c; *y = BORDER + TILESIZE * ui->r; *w = *h = TILESIZE; } } static int game_status(const game_state *state) { return state->was_solved ? +1 : 0; } /* ---------------------------------------------------------------------- * Drawing routines. */ #define PREFERRED_TILE_SIZE 32 enum { COL_BACKGROUND = 0, COL_GRID, COL_BLACK = COL_GRID, COL_TEXT = COL_GRID, COL_USER = COL_GRID, COL_ERROR, COL_LOWLIGHT, COL_CURSOR = COL_LOWLIGHT, NCOLOURS }; static void game_compute_size(const game_params *params, int tilesize, const game_ui *ui, int *x, int *y) { *x = (1 + params->w) * tilesize; *y = (1 + params->h) * tilesize; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } #define COLOUR(ret, i, r, g, b) \ ((ret[3*(i)+0] = (r)), (ret[3*(i)+1] = (g)), (ret[3*(i)+2] = (b))) static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_LOWLIGHT); COLOUR(ret, COL_GRID, 0.0F, 0.0F, 0.0F); COLOUR(ret, COL_ERROR, 1.0F, 0.0F, 0.0F); *ncolours = NCOLOURS; return ret; } static drawcell makecell(puzzle_size value, bool error, bool cursor, bool flash) { drawcell ret; setmember(ret, value); setmember(ret, error); setmember(ret, cursor); setmember(ret, flash); return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { int const w = state->params.w, h = state->params.h, n = w * h; struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->tilesize = 0; ds->grid = snewn(n, drawcell); for (i = 0; i < n; ++i) ds->grid[i] = makecell(w + h, false, false, false); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->grid); sfree(ds); } #define cmpmember(a, b, field) ((a) . field == (b) . field) static bool cell_eq(drawcell a, drawcell b) { return cmpmember(a, b, value) && cmpmember(a, b, error) && cmpmember(a, b, cursor) && cmpmember(a, b, flash); } static void draw_cell(drawing *dr, game_drawstate *ds, int r, int c, drawcell cell); static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int const w = state->params.w, h = state->params.h, n = w * h; int const flash = ((int) (flashtime * 5 / FLASH_TIME)) % 2; int r, c, i; bool *errors = snewn(n, bool); memset(errors, 0, n * sizeof (bool)); find_errors(state, errors); assert (oldstate == NULL); /* only happens if animating moves */ for (i = r = 0; r < h; ++r) { for (c = 0; c < w; ++c, ++i) { drawcell cell = makecell(state->grid[i], errors[i], false, flash); if (r == ui->r && c == ui->c && ui->cursor_show) cell.cursor = true; if (!cell_eq(cell, ds->grid[i])) { draw_cell(dr, ds, r, c, cell); ds->grid[i] = cell; } } } sfree(errors); } static void draw_cell(drawing *draw, game_drawstate *ds, int r, int c, drawcell cell) { int const ts = ds->tilesize; int const y = BORDER + ts * r, x = BORDER + ts * c; int const tx = x + (ts / 2), ty = y + (ts / 2); int const dotsz = (ds->tilesize + 9) / 10; int const colour = (cell.value == BLACK ? cell.error ? COL_ERROR : COL_BLACK : cell.flash || cell.cursor ? COL_LOWLIGHT : COL_BACKGROUND); draw_rect_outline(draw, x, y, ts + 1, ts + 1, COL_GRID); draw_rect (draw, x + 1, y + 1, ts - 1, ts - 1, colour); if (cell.error) draw_rect_outline(draw, x + 1, y + 1, ts - 1, ts - 1, COL_ERROR); switch (cell.value) { case WHITE: draw_rect(draw, tx - dotsz / 2, ty - dotsz / 2, dotsz, dotsz, cell.error ? COL_ERROR : COL_USER); case BLACK: case EMPTY: break; default: { int const colour = (cell.error ? COL_ERROR : COL_GRID); char *msg = nfmtstr(10, "%d", cell.value); draw_text(draw, tx, ty, FONT_VARIABLE, ts * 3 / 5, ALIGN_VCENTRE | ALIGN_HCENTRE, colour, msg); sfree(msg); } } draw_update(draw, x, y, ts + 1, ts + 1); } /* ---------------------------------------------------------------------- * User interface: print */ static void game_print_size(const game_params *params, const game_ui *ui, float *x, float *y) { int print_width, print_height; game_compute_size(params, 800, ui, &print_width, &print_height); *x = print_width / 100.0F; *y = print_height / 100.0F; } static void game_print(drawing *dr, const game_state *state, const game_ui *ui, int tilesize) { int const w = state->params.w, h = state->params.h; game_drawstate ds_obj, *ds = &ds_obj; int r, c, i, colour; ds->tilesize = tilesize; colour = print_mono_colour(dr, 1); assert(colour == COL_BACKGROUND); colour = print_mono_colour(dr, 0); assert(colour == COL_GRID); colour = print_mono_colour(dr, 1); assert(colour == COL_ERROR); colour = print_mono_colour(dr, 0); assert(colour == COL_LOWLIGHT); colour = print_mono_colour(dr, 0); assert(colour == NCOLOURS); for (i = r = 0; r < h; ++r) for (c = 0; c < w; ++c, ++i) draw_cell(dr, ds, r, c, makecell(state->grid[i], false, false, false)); print_line_width(dr, 3 * tilesize / 40); draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, h*TILESIZE, COL_GRID); } /* And that's about it ;-) **************************************************/ #ifdef COMBINED #define thegame range #endif struct game const thegame = { "Range", "games.range", "range", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, get_prefs, set_prefs, new_ui, free_ui, NULL, /* encode_ui */ NULL, /* decode_ui */ NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, true, false, game_print_size, game_print, false, /* wants_statusbar */ false, NULL, /* timing_state */ 0, /* flags */ };